000825451 001__ 825451
000825451 005__ 20240610120309.0
000825451 0247_ $$2doi$$a10.1021/acs.inorgchem.6b00747
000825451 0247_ $$2ISSN$$a0020-1669
000825451 0247_ $$2ISSN$$a1520-510X
000825451 0247_ $$2WOS$$aWOS:000382713900024
000825451 0247_ $$2altmetric$$aaltmetric:10783231
000825451 0247_ $$2pmid$$apmid:27551948
000825451 037__ $$aFZJ-2016-07914
000825451 082__ $$a540
000825451 1001_ $$0P:(DE-Juel1)156151$$aXi, Lifei$$b0
000825451 245__ $$aEffect of Zinc Incorporation on the Performance of Red Light Emitting InP Core Nanocrystals
000825451 260__ $$aWashington, DC$$bAmerican Chemical Society$$c2016
000825451 3367_ $$2DRIVER$$aarticle
000825451 3367_ $$2DataCite$$aOutput Types/Journal article
000825451 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482421470_975
000825451 3367_ $$2BibTeX$$aARTICLE
000825451 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825451 3367_ $$00$$2EndNote$$aJournal Article
000825451 520__ $$aThis report presents a systematic study on the effect of zinc (Zn) carboxylate precursor on the structural and optical properties of red light emitting InP nanocrystals (NCs). NC cores were assessed using X-ray photoelectron spectroscopy (XPS), X-ray absorption spectroscopy (XAS), energy-dispersive X-ray spectroscopy (EDX), and high-resolution transmission electron microscopy (HRTEM). When moderate Zn:In ratios in the reaction pot were used, the incorporation of Zn in InP was insufficient to change the crystal structure or band gap of the NCs, but photoluminescence quantum yield (PLQY) increased dramatically compared with pure InP NCs. Zn was found to incorporate mostly in the phosphate layer on the NCs. PL, PLQY, and time-resolved PL (TRPL) show that Zn carboxylates added to the precursors during NC cores facilitate the synthesis of high-quality InP NCs by suppressing nonradiative and sub-band-gap recombination, and the effect is visible also after a ZnS shell is grown on the cores.
000825451 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825451 588__ $$aDataset connected to CrossRef
000825451 7001_ $$0P:(DE-HGF)0$$aCho, Deok-Yong$$b1
000825451 7001_ $$0P:(DE-Juel1)133839$$aBesmehn, Astrid$$b2
000825451 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b3
000825451 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, Detlev$$b4
000825451 7001_ $$0P:(DE-HGF)0$$aLam, Yeng Ming$$b5
000825451 7001_ $$0FZJ: b.kardynal@fz-juelich.de / PGI-9$$aKardynał, Beata E.$$b6$$eCorresponding author
000825451 773__ $$0PERI:(DE-600)1484438-2$$a10.1021/acs.inorgchem.6b00747$$gVol. 55, no. 17, p. 8381 - 8386$$n17$$p8381 - 8386$$tInorganic chemistry$$v55$$x1520-510X$$y2016
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.pdf$$yRestricted
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.gif?subformat=icon$$xicon$$yRestricted
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825451 8564_ $$uhttps://juser.fz-juelich.de/record/825451/files/acs.inorgchem.6b00747.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825451 909CO $$ooai:juser.fz-juelich.de:825451$$pVDB
000825451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133839$$aForschungszentrum Jülich$$b2$$kFZJ
000825451 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125588$$aForschungszentrum Jülich$$b4$$kFZJ
000825451 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825451 9141_ $$y2016
000825451 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825451 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825451 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825451 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bINORG CHEM : 2015
000825451 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825451 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825451 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825451 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825451 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825451 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825451 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825451 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825451 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825451 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825451 920__ $$lyes
000825451 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825451 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x1
000825451 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000825451 9201_ $$0I:(DE-Juel1)ZEA-3-20090406$$kZEA-3$$lAnalytik$$x3
000825451 980__ $$ajournal
000825451 980__ $$aVDB
000825451 980__ $$aUNRESTRICTED
000825451 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825451 980__ $$aI:(DE-Juel1)PGI-9-20110106
000825451 980__ $$aI:(DE-82)080009_20140620
000825451 980__ $$aI:(DE-Juel1)ZEA-3-20090406
000825451 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000825451 981__ $$aI:(DE-Juel1)PGI-9-20110106
000825451 981__ $$aI:(DE-Juel1)ZEA-3-20090406