000825456 001__ 825456
000825456 005__ 20240610120310.0
000825456 0247_ $$2doi$$a10.1021/acs.langmuir.5b04212
000825456 0247_ $$2WOS$$aWOS:000368950600014
000825456 037__ $$aFZJ-2016-07919
000825456 041__ $$aEnglish
000825456 082__ $$a670
000825456 1001_ $$0P:(DE-Juel1)165601$$aWang, Nengchao$$b0
000825456 245__ $$aTerbium-Doped VO$_{2}$ Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance
000825456 260__ $$aWashington, DC$$bACS Publ.$$c2016
000825456 3367_ $$2DRIVER$$aarticle
000825456 3367_ $$2DataCite$$aOutput Types/Journal article
000825456 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1482497452_29335
000825456 3367_ $$2BibTeX$$aARTICLE
000825456 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825456 3367_ $$00$$2EndNote$$aJournal Article
000825456 520__ $$aVanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τc = 68 °C), low luminous transmission (Tlum), and weak solar modulating ability (ΔTsol). In this paper, the terbium cation (Tb3+) doping was first reported to reduce τc and increase Tlum of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced Tlum and ΔTsol from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The Tlum increases with continuous Tb3+ doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials.
000825456 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000825456 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b1
000825456 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b2
000825456 7001_ $$0P:(DE-HGF)0$$aLiu, S.$$b3
000825456 7001_ $$0P:(DE-HGF)0$$aZheng$$b4
000825456 7001_ $$0P:(DE-HGF)0$$aCao, X.$$b5
000825456 7001_ $$0P:(DE-HGF)0$$aLong, Y.$$b6$$eCorresponding author
000825456 773__ $$0PERI:(DE-600)2005937-1$$a10.1021/acs.langmuir.5b04212$$n3$$p759$$tLangmuir$$v32$$x0743-7463$$y2016
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.pdf$$yRestricted
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.gif?subformat=icon$$xicon$$yRestricted
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825456 8564_ $$uhttps://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825456 909CO $$ooai:juser.fz-juelich.de:825456$$pVDB
000825456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165601$$aForschungszentrum Jülich$$b0$$kFZJ
000825456 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b2$$kFZJ
000825456 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000825456 9141_ $$y2016
000825456 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825456 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825456 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825456 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bLANGMUIR : 2015
000825456 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825456 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825456 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825456 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825456 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825456 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825456 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825456 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825456 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825456 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825456 920__ $$lyes
000825456 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825456 980__ $$ajournal
000825456 980__ $$aVDB
000825456 980__ $$aUNRESTRICTED
000825456 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825456 981__ $$aI:(DE-Juel1)ER-C-1-20170209