Hauptseite > Publikationsdatenbank > Terbium-Doped VO$_{2}$ Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance > print |
001 | 825456 | ||
005 | 20240610120310.0 | ||
024 | 7 | _ | |a 10.1021/acs.langmuir.5b04212 |2 doi |
024 | 7 | _ | |a WOS:000368950600014 |2 WOS |
037 | _ | _ | |a FZJ-2016-07919 |
041 | _ | _ | |a English |
082 | _ | _ | |a 670 |
100 | 1 | _ | |a Wang, Nengchao |0 P:(DE-Juel1)165601 |b 0 |
245 | _ | _ | |a Terbium-Doped VO$_{2}$ Thin Films: Reduced Phase Transition Temperature and Largely Enhanced Luminous Transmittance |
260 | _ | _ | |a Washington, DC |c 2016 |b ACS Publ. |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1482497452_29335 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Vanadium dioxide (VO2) is a well-known thermochromic material with large IR modulating ability, promising for energy-saving smart windows. The main drawbacks of VO2 are its high phase transition temperature (τc = 68 °C), low luminous transmission (Tlum), and weak solar modulating ability (ΔTsol). In this paper, the terbium cation (Tb3+) doping was first reported to reduce τc and increase Tlum of VO2 thin films. Compared with pristine VO2, 2 at. % doping level gives both enhanced Tlum and ΔTsol from 45.8% to 54.0% and 7.7% to 8.3%, respectively. The Tlum increases with continuous Tb3+ doping and reaches 79.4% at 6 at. % doping level, representing ∼73.4% relative increment compared with pure VO2. This has surpassed the best reported doped VO2 thin films. The enhanced thermochromic properties is meaningful for smart window applications of VO2 materials. |
536 | _ | _ | |a 143 - Controlling Configuration-Based Phenomena (POF3-143) |0 G:(DE-HGF)POF3-143 |c POF3-143 |f POF III |x 0 |
700 | 1 | _ | |a Duchamp, Martial |0 P:(DE-Juel1)145413 |b 1 |
700 | 1 | _ | |a Dunin-Borkowski, Rafal |0 P:(DE-Juel1)144121 |b 2 |
700 | 1 | _ | |a Liu, S. |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Zheng |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Cao, X. |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Long, Y. |0 P:(DE-HGF)0 |b 6 |e Corresponding author |
773 | _ | _ | |a 10.1021/acs.langmuir.5b04212 |0 PERI:(DE-600)2005937-1 |n 3 |p 759 |t Langmuir |v 32 |y 2016 |x 0743-7463 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825456/files/acs.langmuir.5b04212.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:825456 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)165601 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)144121 |
913 | 1 | _ | |a DE-HGF |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-140 |0 G:(DE-HGF)POF3-143 |2 G:(DE-HGF)POF3-100 |v Controlling Configuration-Based Phenomena |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b LANGMUIR : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0310 |2 StatID |b NCBI Molecular Biology Database |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-5-20110106 |k PGI-5 |l Mikrostrukturforschung |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-5-20110106 |
981 | _ | _ | |a I:(DE-Juel1)ER-C-1-20170209 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|