000825467 001__ 825467
000825467 005__ 20210129225330.0
000825467 0247_ $$2doi$$a10.1515/nanoph-2016-0114
000825467 0247_ $$2ISSN$$a2192-8606
000825467 0247_ $$2ISSN$$a2192-8614
000825467 0247_ $$2Handle$$a2128/13404
000825467 0247_ $$2WOS$$aWOS:000390606900017
000825467 037__ $$aFZJ-2016-07930
000825467 082__ $$a530
000825467 1001_ $$0P:(DE-HGF)0$$aGritti, Claudia$$b0
000825467 245__ $$aBroadband infrared absorption enhancement by electroless-deposited silver nanoparticles
000825467 260__ $$aBerlin$$bde Gruyter$$c2017
000825467 3367_ $$2DRIVER$$aarticle
000825467 3367_ $$2DataCite$$aOutput Types/Journal article
000825467 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484036565_19265
000825467 3367_ $$2BibTeX$$aARTICLE
000825467 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825467 3367_ $$00$$2EndNote$$aJournal Article
000825467 520__ $$aDecorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.
000825467 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000825467 588__ $$aDataset connected to CrossRef
000825467 65017 $$0V:(DE-MLZ)GC-110$$2V:(DE-HGF)$$aEnergy$$x0
000825467 7001_ $$0P:(DE-HGF)0$$aRaza, Søren$$b1
000825467 7001_ $$0P:(DE-HGF)0$$aKadkhodazadeh, Shima$$b2
000825467 7001_ $$0P:(DE-Juel1)145316$$aKardynal, Beata$$b3$$ufzj
000825467 7001_ $$0P:(DE-HGF)0$$aMalureanu, Radu$$b4
000825467 7001_ $$0P:(DE-HGF)0$$aMortensen, N. Asger$$b5
000825467 7001_ $$0P:(DE-HGF)0$$aLavrinenko, Andrei V.$$b6
000825467 773__ $$0PERI:(DE-600)2674162-3$$a10.1515/nanoph-2016-0114$$gVol. 6, no. 1$$n1$$p289–297$$tNanophotonics$$v6$$x2192-8614$$y2017
000825467 8564_ $$uhttps://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.pdf$$yOpenAccess
000825467 8564_ $$uhttps://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.gif?subformat=icon$$xicon$$yOpenAccess
000825467 8564_ $$uhttps://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825467 8564_ $$uhttps://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825467 8564_ $$uhttps://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825467 909CO $$ooai:juser.fz-juelich.de:825467$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825467 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145316$$aForschungszentrum Jülich$$b3$$kFZJ
000825467 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000825467 9141_ $$y2017
000825467 915__ $$0LIC:(DE-HGF)CCBYNCND3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
000825467 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825467 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825467 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANOPHOTONICS-BERLIN : 2015
000825467 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825467 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825467 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825467 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825467 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825467 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825467 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825467 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825467 920__ $$lyes
000825467 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000825467 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000825467 980__ $$ajournal
000825467 980__ $$aVDB
000825467 980__ $$aUNRESTRICTED
000825467 980__ $$aI:(DE-Juel1)PGI-9-20110106
000825467 980__ $$aI:(DE-82)080009_20140620
000825467 9801_ $$aFullTexts