Hauptseite > Publikationsdatenbank > Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles > print |
001 | 825467 | ||
005 | 20210129225330.0 | ||
024 | 7 | _ | |a 10.1515/nanoph-2016-0114 |2 doi |
024 | 7 | _ | |a 2192-8606 |2 ISSN |
024 | 7 | _ | |a 2192-8614 |2 ISSN |
024 | 7 | _ | |a 2128/13404 |2 Handle |
024 | 7 | _ | |a WOS:000390606900017 |2 WOS |
037 | _ | _ | |a FZJ-2016-07930 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Gritti, Claudia |0 P:(DE-HGF)0 |b 0 |
245 | _ | _ | |a Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles |
260 | _ | _ | |a Berlin |c 2017 |b de Gruyter |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1484036565_19265 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations. |
536 | _ | _ | |a 524 - Controlling Collective States (POF3-524) |0 G:(DE-HGF)POF3-524 |c POF3-524 |f POF III |x 0 |
588 | _ | _ | |a Dataset connected to CrossRef |
650 | 1 | 7 | |a Energy |0 V:(DE-MLZ)GC-110 |2 V:(DE-HGF) |x 0 |
700 | 1 | _ | |a Raza, Søren |0 P:(DE-HGF)0 |b 1 |
700 | 1 | _ | |a Kadkhodazadeh, Shima |0 P:(DE-HGF)0 |b 2 |
700 | 1 | _ | |a Kardynal, Beata |0 P:(DE-Juel1)145316 |b 3 |u fzj |
700 | 1 | _ | |a Malureanu, Radu |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Mortensen, N. Asger |0 P:(DE-HGF)0 |b 5 |
700 | 1 | _ | |a Lavrinenko, Andrei V. |0 P:(DE-HGF)0 |b 6 |
773 | _ | _ | |a 10.1515/nanoph-2016-0114 |g Vol. 6, no. 1 |0 PERI:(DE-600)2674162-3 |n 1 |p 289–297 |t Nanophotonics |v 6 |y 2017 |x 2192-8614 |
856 | 4 | _ | |y OpenAccess |u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.pdf |
856 | 4 | _ | |y OpenAccess |x icon |u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.gif?subformat=icon |
856 | 4 | _ | |y OpenAccess |x icon-1440 |u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-1440 |
856 | 4 | _ | |y OpenAccess |x icon-180 |u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-180 |
856 | 4 | _ | |y OpenAccess |x icon-640 |u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-640 |
909 | C | O | |o oai:juser.fz-juelich.de:825467 |p openaire |p open_access |p driver |p VDB |p dnbdelivery |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)145316 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT) |1 G:(DE-HGF)POF3-520 |0 G:(DE-HGF)POF3-524 |2 G:(DE-HGF)POF3-500 |v Controlling Collective States |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0 |0 LIC:(DE-HGF)CCBYNCND3 |2 HGFVOC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1160 |2 StatID |b Current Contents - Engineering, Computing and Technology |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b NANOPHOTONICS-BERLIN : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0501 |2 StatID |b DOAJ Seal |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0500 |2 StatID |b DOAJ |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
915 | _ | _ | |a OpenAccess |0 StatID:(DE-HGF)0510 |2 StatID |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0300 |2 StatID |b Medline |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)PGI-9-20110106 |k PGI-9 |l Halbleiter-Nanoelektronik |x 0 |
920 | 1 | _ | |0 I:(DE-82)080009_20140620 |k JARA-FIT |l JARA-FIT |x 1 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a UNRESTRICTED |
980 | _ | _ | |a I:(DE-Juel1)PGI-9-20110106 |
980 | _ | _ | |a I:(DE-82)080009_20140620 |
980 | 1 | _ | |a FullTexts |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|