001     825467
005     20210129225330.0
024 7 _ |a 10.1515/nanoph-2016-0114
|2 doi
024 7 _ |a 2192-8606
|2 ISSN
024 7 _ |a 2192-8614
|2 ISSN
024 7 _ |a 2128/13404
|2 Handle
024 7 _ |a WOS:000390606900017
|2 WOS
037 _ _ |a FZJ-2016-07930
082 _ _ |a 530
100 1 _ |a Gritti, Claudia
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Broadband infrared absorption enhancement by electroless-deposited silver nanoparticles
260 _ _ |a Berlin
|c 2017
|b de Gruyter
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484036565_19265
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Decorating semiconductor surfaces with plasmonic nanoparticles (NPs) is considered a viable solution for enhancing the absorptive properties of photovoltaic and photodetecting devices. We propose to deposit silver NPs on top of a semiconductor wafer by a cheap and fast electroless plating technique. Optical characterization confirms that the random array of electroless-deposited NPs improves absorption by up to 20% in a broadband of near-infrared frequencies from the bandgap edge to 2000 nm. Due to the small filling fraction of particles, the reflection in the visible range is practically unchanged, which points to the possible applications of such deposition method for harvesting photons in nanophotonics and photovoltaics. The broadband absorption is a consequence of the resonant behavior of particles with different shapes and sizes, which strongly localize the incident light at the interface of a high-index semiconductor substrate. Our hypothesis is substantiated by examining the plasmonic response of the electroless-deposited NPs using both electron energy loss spectroscopy and numerical calculations.
536 _ _ |a 524 - Controlling Collective States (POF3-524)
|0 G:(DE-HGF)POF3-524
|c POF3-524
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 1 7 |a Energy
|0 V:(DE-MLZ)GC-110
|2 V:(DE-HGF)
|x 0
700 1 _ |a Raza, Søren
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Kadkhodazadeh, Shima
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kardynal, Beata
|0 P:(DE-Juel1)145316
|b 3
|u fzj
700 1 _ |a Malureanu, Radu
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Mortensen, N. Asger
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Lavrinenko, Andrei V.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.1515/nanoph-2016-0114
|g Vol. 6, no. 1
|0 PERI:(DE-600)2674162-3
|n 1
|p 289–297
|t Nanophotonics
|v 6
|y 2017
|x 2192-8614
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825467/files/%5BNanophotonics%5D%20Broadband%20infrared%20absorption%20enhancement%20by%20electroless-deposited%20silver%20nanoparticles.jpg?subformat=icon-640
909 C O |o oai:juser.fz-juelich.de:825467
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145316
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-524
|2 G:(DE-HGF)POF3-500
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 3.0
|0 LIC:(DE-HGF)CCBYNCND3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANOPHOTONICS-BERLIN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21