001     825478
005     20210129225334.0
024 7 _ |a 10.1111/ppl.12512
|2 doi
024 7 _ |a 0031-9317
|2 ISSN
024 7 _ |a 1399-3054
|2 ISSN
024 7 _ |a 2128/13359
|2 Handle
024 7 _ |a WOS:000387869400001
|2 WOS
024 7 _ |a altmetric:11974626
|2 altmetric
024 7 _ |a pmid:27616618
|2 pmid
037 _ _ |a FZJ-2016-07941
041 _ _ |a English
082 _ _ |a 580
100 1 _ |a Junker, Laura
|0 P:(DE-Juel1)168454
|b 0
|u fzj
245 _ _ |a Fast detection of leaf pigments and isoprenoids for ecophysiological studies, plant phenotyping and validating remote-sensing of vegetation
260 _ _ |a Oxford [u.a.]
|c 2016
|b Wiley-Blackwell
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1482499355_29339
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Rapid developments in remote-sensing of vegetation and high-throughput precision plant phenotyping promise a range of real-life applications using leaf optical properties for non-destructive assessment of plant performance. Use of leaf optical properties for assessing plant performance requires the ability to use photosynthetic pigments as proxies for physiological properties and the ability to detect these pigments fast, reliably and at low cost. We describe a simple and cost-effective protocol for the rapid analysis of chlorophylls, carotenoids and tocopherols using high-performance liquid chromatography (HPLC). Many existing methods are based on the expensive solvent acetonitrile, take a long time or do not include lutein epoxide and α-carotene. We aimed to develop an HPLC method which separates all major chlorophylls and carotenoids as well as lutein epoxide, α-carotene and α-tocopherol. Using a C30-column and a mobile phase with a gradient of methanol, methyl-tert-butyl-ether (MTBE) and water, our method separates the above pigments and isoprenoids within 28 min. The broad applicability of our method is demonstrated using samples from various plant species and tissue types, e.g. leaves of Arabidopsis and avocado plants, several deciduous and conifer tree species, various crops, stems of parasitic dodder, fruit of tomato, roots of carrots and Chlorella algae. In comparison to previous methods, our method is very affordable, fast and versatile and can be used to analyze all major photosynthetic pigments that contribute to changes in leaf optical properties and which are of interest in most ecophysiological studies.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Ensminger, Ingo
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
773 _ _ |a 10.1111/ppl.12512
|g Vol. 158, no. 4, p. 369 - 381
|0 PERI:(DE-600)2020837-6
|n 4
|p 369 - 381
|t Physiologia plantarum
|v 158
|y 2016
|x 0031-9317
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825478/files/Chapter%202%20PhD%20thesis%20Laura%20junker.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825478
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168454
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYSIOL PLANTARUM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21