
NestMC
A morphologically detailed neural network simulator for modern high performance computer architectures

Wouter Klijna, Ben Cummingb, Alexander Peysera, Vasileios Karakasisb, Stuart Yatesb

aSimulation Lab Neuroscience, Forschungszentrum Jülich bSwiss National Supercomputing Center

Why NestMC?

Local Field

Potential

Both as model output and as
part of model feedback loop.

Larger and

Longer!

Running more or larger models
faster to improve parameter

searches and statistical
validation.

Dynamic Models

Time-varying morphology,
connectivity and synapses.

New and emerging HPC many core architectures can achieve these aims

Two HBP prototype systems installed at Jülich. Both are a radical departure from current technology.
left: IBM Power8+GPU “fat node”. right: Intel many core KNL “blade”.

Current simulators were designed for single core systems, with parallel implementations added later. There
are efforts to add many core support to existing codes, however they are subject to the law of diminishing
returns. This presents an opportunity to start work on the next generation of simulators, designed from
the ground up to support diverse many core architectures. NestMC aims to fill this gap.

Who

NestMC is developed by a team from three HPC
centers at Jülich, CSCS and BSC.

• Part of HPC infrastructure work package in the
Human Brain Project.

• With the NEST Initiative.
• The centers are motivated to prepare neuro-

science users for new HPC architectures.
• We provide know-how in computer science,

math and software development.

How

NestMC is designed from the ground up
for many core architectures.

• Written in modern C++, CUDA, Intel Thread-
ing Building Blocks and HPX.

• Is open source.
• Uses sound development practices including unit

testing, continuous Integration, and validation.
• Aims to be user and community-driven: you can

help!

Prototype

Start with a prototype
The first step is to develop a sufficiently

complex prototype to inform important de-
sign considerations:

• Explore the trade-offs between abstraction
and performance.

• Support for representative architectures:
multicore, Intel KNL, and GPU.

• The features in the prototype test our as-
sumptions and inform the design:

– Test interopability with an external API
(e.g. LFP).

– Test the extensibility of the internal API
used to implement algorithms (e.g. gap
junctions).

– Test an exotic back end (e.g. GPU).

• Aim to understand the design space and
domain before committing to a design.

Prototype progress

• Support for x86 and KNL (GPU partially).
• Supports NMODL for ion channels and synapses.
• Distributed building of networks up to millions of cells.
• Finite volume discretization of the cable equation.
• Generic network connection model distributed via MPI.
• Asynchronous spike communication and computation.
• Validated against Neuron.

Internal prototype APIs

model
description
(NMODL &
recipes)

model
execution

loop

cell
simulation

spike
exchange

CPU
implementation

GPU
implementation

MPI
implementation

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx
xxxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

API API API

The modular internal simulation code in the prototype is designed to
allow plug and play of different simulation and communication

implementations.

Do you want to know more?

The source code of the prototype is not in an open repos-
itory. If you would like to know more, contribute or col-
laborate, please contact us directly for access to the code.

The source, tests and validation for NestMC will be in an

open repository by April 2017 at the latest.

email bcumming@cscs.ch
a.peyser@fz-juelich.de

web eth-cscs.github.io/nestmc

User-driven development is the key!

Current tools and technology influence the ideas

that users consider.

We need help from the neuroscience community.

• Tell us which features you need.
• Help us build a simulator for your community.

Performance of prototype

cluster Cray XC40: 36 cores & 64 GB per node

cells 350 compartments & 2000 synapses each

Passive dendrites, Hodgkin–Huxley soma

duration 500 ms

Reduce wall time with more nodes

1 2 4 8 16 32 64 128 256
1

10

100

1000

10000

8’45” – 0.146 nh

5” – 0.158 nh

70’03” – 1.17 nh

18” – 1.25 nh

nodes

w
al

l
ti
m

e
(s

)

147,456 cells

18,432 cells

Time to solution for two models of fixed size as a

function of the number of compute nodes. Increasing

the number of processors reduces the time to solution,

with little increase in the compute resources required,

measured in node hours (nh).

Scale out model size

1 2 4 8 16 32 64 128 256
260

265

270

275

2,359,296 cells

9,216 cells

nodes

w
al

l
ti
m

e
(s

)

Time to solution with 256 cells assigned to each core,

as the number of nodes is increased. This way one

can scale up to large networks without significantly

increasing wall time (about 9 minutes per simulated

second for over 2 million cells on 256 nodes for this

model).

Using high-speed memory on KNL

5 10 15

10

100

fused cells per group

w
al

l
ti
m

e
(s

)

16,384 cells with 1,000 synapses

4,096 cells with 500 synapses

Two models are run on KNL with and without high-

speed memory (solid and dashed lines respectively).

The results show the effect of fusing multiple cells into

groups, which will be an important optimization for

some models and architectures.


