000825604 001__ 825604
000825604 005__ 20210129225358.0
000825604 0247_ $$2Handle$$a2128/13377
000825604 037__ $$aFZJ-2016-08049
000825604 1001_ $$0P:(DE-Juel1)165859$$aDiaz, Sandra$$b0$$eCorresponding author$$ufzj
000825604 1112_ $$aBernstein Conference 2016$$cBerlin$$d2016-09-21 - 2016-09-21$$wGermany
000825604 245__ $$aMultiscale approach to explore the relationships between connectivity and function in whole brain simulations
000825604 260__ $$c2016
000825604 3367_ $$033$$2EndNote$$aConference Paper
000825604 3367_ $$2BibTeX$$aINPROCEEDINGS
000825604 3367_ $$2DRIVER$$aconferenceObject
000825604 3367_ $$2ORCID$$aCONFERENCE_POSTER
000825604 3367_ $$2DataCite$$aOutput Types/Conference Poster
000825604 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1586172498_13716$$xOther
000825604 520__ $$aIn order to better understand the relationship of connectivity and function in the brain at different scales, in this work we show the results of using point neuron network simulations to complement connectivity information of whole brain simulations based on a dynamic neuron mass model. In our multiscale approach, we simulate a whole brain parcellated into 68 regions using a similar setup as described in Deco et al. 2014. Each region is modeled as a dynamic neuron mass and, in parallel, we also model each region as small point neuron populations in NEST. Structural plasticity in NEST is then used to calculate inner inhibitory connectivity required to match experimentally observed firing rate behavior. An interactive tool was developed in order to steer the structural plasticity algorithm and take all the regions, which are also highly interconnected, to their ideal firing activity. An inner inhibition fitting was first proposed in the work by Deco 2014, using an iterative tunning method. In our work, we allow the point neuron network to self generate the connectivity using simple homeostatic rules and then we feed this information to the dynamic mass model simulation. With the resulting connectivity data from the NEST simulations and experimentally obtained DTI inter region connectivity, simulations of the whole brain producing results comparable to experimental fMRI data are possible. Using this approach, the fitting and parameter space exploration times are reduced and a new way to explore the impact of connectivity in function at different scales is presented.
000825604 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000825604 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000825604 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000825604 536__ $$0G:(DE-HGF)B1175.01.12$$aW2Morrison - W2/W3 Professorinnen Programm der Helmholtzgemeinschaft (B1175.01.12)$$cB1175.01.12$$x3
000825604 536__ $$0G:(DE-Juel1)BMBF-01GQ1504B$$aVirtual Connectomics - Deutschland - USA Zusammenarbeit in Computational Science: Mechanistische Zusammenhänge zwischen Struktur und funktioneller Dynamik im menschlichen Gehirn (BMBF-01GQ1504B)$$cBMBF-01GQ1504B$$x4
000825604 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x5
000825604 7001_ $$0P:(DE-HGF)0$$aNowke, Christian$$b1
000825604 7001_ $$0P:(DE-Juel1)161525$$aPeyser, Alexander$$b2$$ufzj
000825604 7001_ $$0P:(DE-HGF)0$$aHentschel, Bernd$$b3
000825604 7001_ $$0P:(DE-HGF)0$$aWeyers, Benjamin$$b4
000825604 7001_ $$0P:(DE-Juel1)151166$$aMorrison, Abigail$$b5$$ufzj
000825604 7001_ $$0P:(DE-Juel1)162486$$aKuhlen, Torsten$$b6
000825604 8564_ $$uhttps://juser.fz-juelich.de/record/825604/files/Bernstein2016_3.pdf$$yOpenAccess
000825604 8564_ $$uhttps://juser.fz-juelich.de/record/825604/files/Bernstein2016_3.gif?subformat=icon$$xicon$$yOpenAccess
000825604 8564_ $$uhttps://juser.fz-juelich.de/record/825604/files/Bernstein2016_3.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825604 8564_ $$uhttps://juser.fz-juelich.de/record/825604/files/Bernstein2016_3.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825604 8564_ $$uhttps://juser.fz-juelich.de/record/825604/files/Bernstein2016_3.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825604 909CO $$ooai:juser.fz-juelich.de:825604$$pdriver$$pVDB$$popen_access$$popenaire
000825604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165859$$aForschungszentrum Jülich$$b0$$kFZJ
000825604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161525$$aForschungszentrum Jülich$$b2$$kFZJ
000825604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151166$$aForschungszentrum Jülich$$b5$$kFZJ
000825604 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000825604 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000825604 9141_ $$y2016
000825604 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825604 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000825604 980__ $$aposter
000825604 980__ $$aVDB
000825604 980__ $$aI:(DE-Juel1)JSC-20090406
000825604 980__ $$aUNRESTRICTED
000825604 9801_ $$aFullTexts