000825701 001__ 825701
000825701 005__ 20210129225411.0
000825701 0247_ $$2doi$$a10.1126/science.aah5844
000825701 0247_ $$2ISSN$$a0036-8075
000825701 0247_ $$2ISSN$$a1095-9203
000825701 0247_ $$2WOS$$aWOS:000390254300049
000825701 0247_ $$2altmetric$$aaltmetric:14573706
000825701 0247_ $$2pmid$$apmid:27940578
000825701 037__ $$aFZJ-2017-00018
000825701 082__ $$a500
000825701 1001_ $$0P:(DE-HGF)0$$aGustavsson, S.$$b0$$eCorresponding author
000825701 245__ $$aSuppressing relaxation in superconducting qubits by quasiparticle pumping
000825701 260__ $$aWashington, DC [u.a.]$$bAmerican Association for the Advancement of Science64196$$c2016
000825701 3367_ $$2DRIVER$$aarticle
000825701 3367_ $$2DataCite$$aOutput Types/Journal article
000825701 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483599578_4023
000825701 3367_ $$2BibTeX$$aARTICLE
000825701 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825701 3367_ $$00$$2EndNote$$aJournal Article
000825701 520__ $$aDynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.
000825701 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000825701 588__ $$aDataset connected to CrossRef
000825701 7001_ $$0P:(DE-HGF)0$$aYan, F.$$b1
000825701 7001_ $$0P:(DE-Juel1)151130$$aCatelani, G.$$b2
000825701 7001_ $$0P:(DE-HGF)0$$aBylander, J.$$b3
000825701 7001_ $$0P:(DE-HGF)0$$aKamal, A.$$b4
000825701 7001_ $$0P:(DE-HGF)0$$aBirenbaum, J.$$b5
000825701 7001_ $$0P:(DE-HGF)0$$aHover, D.$$b6
000825701 7001_ $$0P:(DE-HGF)0$$aRosenberg, D.$$b7
000825701 7001_ $$0P:(DE-HGF)0$$aSamach, G.$$b8
000825701 7001_ $$0P:(DE-HGF)0$$aSears, A. P.$$b9
000825701 7001_ $$0P:(DE-HGF)0$$aWeber, S. J.$$b10
000825701 7001_ $$0P:(DE-HGF)0$$aYoder, J. L.$$b11
000825701 7001_ $$0P:(DE-HGF)0$$aClarke, J.$$b12
000825701 7001_ $$0P:(DE-HGF)0$$aKerman, A. J.$$b13
000825701 7001_ $$0P:(DE-HGF)0$$aYoshihara, F.$$b14
000825701 7001_ $$0P:(DE-HGF)0$$aNakamura, Y.$$b15
000825701 7001_ $$0P:(DE-HGF)0$$aOrlando, T. P.$$b16
000825701 7001_ $$0P:(DE-HGF)0$$aOliver, W. D.$$b17
000825701 773__ $$0PERI:(DE-600)2066996-3$$a10.1126/science.aah5844$$gVol. 354, no. 6319, p. 1573 - 1577$$n6319$$p1573 - 1577$$tScience$$v354$$x1095-9203$$y2016
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.pdf$$yRestricted
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.gif?subformat=icon$$xicon$$yRestricted
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825701 8564_ $$uhttps://juser.fz-juelich.de/record/825701/files/1573.full.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825701 909CO $$ooai:juser.fz-juelich.de:825701$$pVDB
000825701 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151130$$aForschungszentrum Jülich$$b2$$kFZJ
000825701 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000825701 9141_ $$y2016
000825701 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825701 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000825701 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825701 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000825701 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825701 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCIENCE : 2015
000825701 915__ $$0StatID:(DE-HGF)9930$$2StatID$$aIF >= 30$$bSCIENCE : 2015
000825701 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825701 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825701 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825701 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825701 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000825701 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825701 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000825701 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825701 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000825701 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825701 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825701 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825701 920__ $$lyes
000825701 9201_ $$0I:(DE-Juel1)PGI-2-20110106$$kPGI-2$$lTheoretische Nanoelektronik$$x0
000825701 980__ $$ajournal
000825701 980__ $$aVDB
000825701 980__ $$aUNRESTRICTED
000825701 980__ $$aI:(DE-Juel1)PGI-2-20110106