001     825701
005     20210129225411.0
024 7 _ |a 10.1126/science.aah5844
|2 doi
024 7 _ |a 0036-8075
|2 ISSN
024 7 _ |a 1095-9203
|2 ISSN
024 7 _ |a WOS:000390254300049
|2 WOS
024 7 _ |a altmetric:14573706
|2 altmetric
024 7 _ |a pmid:27940578
|2 pmid
037 _ _ |a FZJ-2017-00018
082 _ _ |a 500
100 1 _ |a Gustavsson, S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Suppressing relaxation in superconducting qubits by quasiparticle pumping
260 _ _ |a Washington, DC [u.a.]
|c 2016
|b American Association for the Advancement of Science64196
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483599578_4023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dynamical error suppression techniques are commonly used to improve coherence in quantum systems. They reduce dephasing errors by applying control pulses designed to reverse erroneous coherent evolution driven by environmental noise. However, such methods cannot correct for irreversible processes such as energy relaxation. We investigate a complementary, stochastic approach to reducing errors: Instead of deterministically reversing the unwanted qubit evolution, we use control pulses to shape the noise environment dynamically. In the context of superconducting qubits, we implement a pumping sequence to reduce the number of unpaired electrons (quasiparticles) in close proximity to the device. A 70% reduction in the quasiparticle density results in a threefold enhancement in qubit relaxation times and a comparable reduction in coherence variability.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yan, F.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Catelani, G.
|0 P:(DE-Juel1)151130
|b 2
700 1 _ |a Bylander, J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kamal, A.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Birenbaum, J.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Hover, D.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Rosenberg, D.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Samach, G.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Sears, A. P.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Weber, S. J.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Yoder, J. L.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Clarke, J.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kerman, A. J.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Yoshihara, F.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Nakamura, Y.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Orlando, T. P.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Oliver, W. D.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1126/science.aah5844
|g Vol. 354, no. 6319, p. 1573 - 1577
|0 PERI:(DE-600)2066996-3
|n 6319
|p 1573 - 1577
|t Science
|v 354
|y 2016
|x 1095-9203
856 4 _ |u https://juser.fz-juelich.de/record/825701/files/1573.full.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825701/files/1573.full.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825701/files/1573.full.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825701/files/1573.full.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825701
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)151130
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCIENCE : 2015
915 _ _ |a IF >= 30
|0 StatID:(DE-HGF)9930
|2 StatID
|b SCIENCE : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a National-Konsortium
|0 StatID:(DE-HGF)0430
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-2-20110106
|k PGI-2
|l Theoretische Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-2-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21