000825756 001__ 825756
000825756 005__ 20210129225424.0
000825756 0247_ $$2Handle$$a2128/13381
000825756 037__ $$aFZJ-2017-00068
000825756 082__ $$a530
000825756 1001_ $$0P:(DE-HGF)0$$aGünther, J.$$b0
000825756 1112_ $$a33rd International Symposium on Lattice Field Theory$$cKobe$$d2015-07-14 - 2015-07-18$$gLattice 2015$$wJapan
000825756 245__ $$aThe curvature of the crossover line in the (T,μ)-phase diagram of QCD
000825756 260__ $$aTrieste$$bSISSA$$c2016
000825756 29510 $$aProceedings of Science
000825756 300__ $$a142
000825756 3367_ $$2ORCID$$aCONFERENCE_PAPER
000825756 3367_ $$033$$2EndNote$$aConference Paper
000825756 3367_ $$2BibTeX$$aINPROCEEDINGS
000825756 3367_ $$2DRIVER$$aconferenceObject
000825756 3367_ $$2DataCite$$aOutput Types/Conference Paper
000825756 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1483598239_4015
000825756 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000825756 500__ $$aPoS(LATTICE 2015)142
000825756 520__ $$aAn efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamicalobservables from imaginary chemical potential. The phase diagram features acrossover line starting from the transition temperature already determined at zero chemical potential.In this talk we focus on the curvature of this line at mu = 0. We present the extrapolation ofthe crossover temperature based on three observables at several lattice spacings. The simulationswere performed at zero and at moderate values of the imaginary chemical potential, always in thestrangeness neutral point. We used the Symanzik-improved gauge action with four times stoutsmeared staggered fermions.
000825756 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000825756 7001_ $$0P:(DE-HGF)0$$aBellwied, R.$$b1
000825756 7001_ $$0P:(DE-HGF)0$$aBorsanyi, S.$$b2
000825756 7001_ $$0P:(DE-HGF)0$$aFodor, Z.$$b3
000825756 7001_ $$0P:(DE-HGF)0$$aKatz, S. D.$$b4
000825756 7001_ $$0P:(DE-HGF)0$$aRatti, C.$$b5
000825756 7001_ $$0P:(DE-Juel1)161563$$aSzabo, Kalman$$b6$$ufzj
000825756 773__ $$0PERI:(DE-600)2642026-0$$x1824-8039$$y2016
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.pdf$$yOpenAccess
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.gif?subformat=icon$$xicon$$yOpenAccess
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825756 8564_ $$uhttps://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825756 909CO $$ooai:juser.fz-juelich.de:825756$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825756 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161563$$aForschungszentrum Jülich$$b6$$kFZJ
000825756 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000825756 9141_ $$y2016
000825756 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825756 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000825756 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000825756 980__ $$acontrib
000825756 980__ $$aVDB
000825756 980__ $$aUNRESTRICTED
000825756 980__ $$acontb
000825756 980__ $$aI:(DE-Juel1)JSC-20090406
000825756 9801_ $$aFullTexts