001     825756
005     20210129225424.0
024 7 _ |a 2128/13381
|2 Handle
037 _ _ |a FZJ-2017-00068
082 _ _ |a 530
100 1 _ |a Günther, J.
|0 P:(DE-HGF)0
|b 0
111 2 _ |a 33rd International Symposium on Lattice Field Theory
|g Lattice 2015
|c Kobe
|d 2015-07-14 - 2015-07-18
|w Japan
245 _ _ |a The curvature of the crossover line in the (T,μ)-phase diagram of QCD
260 _ _ |a Trieste
|c 2016
|b SISSA
295 1 0 |a Proceedings of Science
300 _ _ |a 142
336 7 _ |a CONFERENCE_PAPER
|2 ORCID
336 7 _ |a Conference Paper
|0 33
|2 EndNote
336 7 _ |a INPROCEEDINGS
|2 BibTeX
336 7 _ |a conferenceObject
|2 DRIVER
336 7 _ |a Output Types/Conference Paper
|2 DataCite
336 7 _ |a Contribution to a conference proceedings
|b contrib
|m contrib
|0 PUB:(DE-HGF)8
|s 1483598239_4015
|2 PUB:(DE-HGF)
336 7 _ |a Contribution to a book
|0 PUB:(DE-HGF)7
|2 PUB:(DE-HGF)
|m contb
500 _ _ |a PoS(LATTICE 2015)142
520 _ _ |a An efficient way to study the QCD phase diagram at small finite density is to extrapolate thermodynamicalobservables from imaginary chemical potential. The phase diagram features acrossover line starting from the transition temperature already determined at zero chemical potential.In this talk we focus on the curvature of this line at mu = 0. We present the extrapolation ofthe crossover temperature based on three observables at several lattice spacings. The simulationswere performed at zero and at moderate values of the imaginary chemical potential, always in thestrangeness neutral point. We used the Symanzik-improved gauge action with four times stoutsmeared staggered fermions.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
700 1 _ |a Bellwied, R.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Borsanyi, S.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Fodor, Z.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Katz, S. D.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Ratti, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Szabo, Kalman
|0 P:(DE-Juel1)161563
|b 6
|u fzj
773 _ _ |y 2016
|0 PERI:(DE-600)2642026-0
|x 1824-8039
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825756/files/LATTICE%202015_142.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825756
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)161563
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2016
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contrib
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a contb
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21