000825758 001__ 825758
000825758 005__ 20250314084116.0
000825758 020__ $$a978-3-319-50861-0 (print)
000825758 020__ $$a978-3-319-50862-7 (electronic)
000825758 0247_ $$2doi$$a10.1007/978-3-319-50862-7_4
000825758 0247_ $$2ISSN$$a0302-9743
000825758 0247_ $$2ISSN$$a1611-3349
000825758 037__ $$aFZJ-2017-00070
000825758 082__ $$a004
000825758 1001_ $$0P:(DE-HGF)0$$aHahne, Jan$$b0$$eCorresponding author
000825758 1112_ $$aInternational Workshop on Brain-Inspired Computing$$cCetraro$$d2015-07-06 - 2015-07-10$$gBrainComp 2015$$wItaly
000825758 245__ $$aIncluding Gap Junctions into Distributed Neuronal Network Simulations
000825758 260__ $$aCham$$bSpringer International Publishing$$c2016
000825758 29510 $$aBrain-Inspired Computing / Amunts, Katrin (Editor) ; Cham : Springer International Publishing, 2016, Chapter 4 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-50861-0=978-3-319-50862-7 ; doi:10.1007/978-3-319-50862-7
000825758 300__ $$a43 - 57
000825758 3367_ $$2ORCID$$aCONFERENCE_PAPER
000825758 3367_ $$033$$2EndNote$$aConference Paper
000825758 3367_ $$2BibTeX$$aINPROCEEDINGS
000825758 3367_ $$2DRIVER$$aconferenceObject
000825758 3367_ $$2DataCite$$aOutput Types/Conference Paper
000825758 3367_ $$0PUB:(DE-HGF)8$$2PUB:(DE-HGF)$$aContribution to a conference proceedings$$bcontrib$$mcontrib$$s1570522904_2021
000825758 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$mcontb
000825758 4900_ $$aLecture Notes in Computer Science$$v10087
000825758 520__ $$aContemporary simulation technology for neuronal networks enables the simulation of brain-scale networks using neuron models with a single or a few compartments. However, distributed simulations at full cell density are still lacking the electrical coupling between cells via so called gap junctions. This is due to the absence of efficient algorithms to simulate gap junctions on large parallel computers. The difficulty is that gap junctions require an instantaneous interaction between the coupled neurons, whereas the efficiency of simulation codes for spiking neurons relies on delayed communication. In a recent paper [15] we describe a technology to overcome this obstacle. Here, we give an overview of the challenges to include gap junctions into a distributed simulation scheme for neuronal networks and present an implementation of the new technology available in the NEural Simulation Tool (NEST 2.10.0). Subsequently we introduce the usage of gap junctions in model scripts as well as benchmarks assessing the performance and overhead of the technology on the supercomputers JUQUEEN and K computer.
000825758 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000825758 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x1
000825758 536__ $$0G:(DE-Juel1)HGF-SMHB-2013-2017$$aSMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017)$$cHGF-SMHB-2013-2017$$fSMHB$$x2
000825758 536__ $$0G:(EU-Grant)720270$$aHBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270)$$c720270$$fH2020-Adhoc-2014-20$$x3
000825758 536__ $$0G:(DE-Juel1)jinb33_20121101$$aBrain-Scale Simulations (jinb33_20121101)$$cjinb33_20121101$$fBrain-Scale Simulations$$x4
000825758 536__ $$0G:(DE-Juel1)hwu12_20141101$$aScalable solvers for linear systems and time-dependent problems (hwu12_20141101)$$chwu12_20141101$$fScalable solvers for linear systems and time-dependent problems$$x5
000825758 536__ $$0G:(DE-Juel1)Helmholtz-SLNS$$aSLNS - SimLab Neuroscience (Helmholtz-SLNS)$$cHelmholtz-SLNS$$x6
000825758 536__ $$0G:(DE-Juel-1)ATMLPP$$aATMLPP - ATML Parallel Performance (ATMLPP)$$cATMLPP$$x7
000825758 588__ $$aDataset connected to CrossRef Book Series
000825758 7001_ $$0P:(DE-Juel1)144806$$aHelias, Moritz$$b1$$ufzj
000825758 7001_ $$0P:(DE-Juel1)151364$$aKunkel, Susanne$$b2$$ufzj
000825758 7001_ $$0P:(DE-HGF)0$$aIgarashi, Jun$$b3
000825758 7001_ $$0P:(DE-HGF)0$$aKitayama, Itaru$$b4
000825758 7001_ $$0P:(DE-Juel1)132302$$aWylie, Brian$$b5$$ufzj
000825758 7001_ $$0P:(DE-HGF)0$$aBolten, Matthias$$b6
000825758 7001_ $$0P:(DE-HGF)0$$aFrommer, Andreas$$b7
000825758 7001_ $$0P:(DE-Juel1)144174$$aDiesmann, Markus$$b8$$ufzj
000825758 773__ $$a10.1007/978-3-319-50862-7_4
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.pdf$$yRestricted
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.gif?subformat=icon$$xicon$$yRestricted
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825758 8564_ $$uhttps://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825758 909CO $$ooai:juser.fz-juelich.de:825758$$pec_fundedresources$$pVDB$$popenaire
000825758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144806$$aForschungszentrum Jülich$$b1$$kFZJ
000825758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151364$$aForschungszentrum Jülich$$b2$$kFZJ
000825758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132302$$aForschungszentrum Jülich$$b5$$kFZJ
000825758 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144174$$aForschungszentrum Jülich$$b8$$kFZJ
000825758 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000825758 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x1
000825758 9141_ $$y2016
000825758 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825758 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825758 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825758 9201_ $$0I:(DE-Juel1)INM-6-20090406$$kINM-6$$lComputational and Systems Neuroscience$$x0
000825758 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x1
000825758 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000825758 980__ $$acontrib
000825758 980__ $$aVDB
000825758 980__ $$acontb
000825758 980__ $$aI:(DE-Juel1)INM-6-20090406
000825758 980__ $$aI:(DE-Juel1)JSC-20090406
000825758 980__ $$aI:(DE-82)080010_20140620
000825758 980__ $$aUNRESTRICTED
000825758 981__ $$aI:(DE-Juel1)IAS-6-20130828