Home > Publications database > Including Gap Junctions into Distributed Neuronal Network Simulations > print |
001 | 825758 | ||
005 | 20250314084116.0 | ||
020 | _ | _ | |a 978-3-319-50861-0 (print) |
020 | _ | _ | |a 978-3-319-50862-7 (electronic) |
024 | 7 | _ | |a 10.1007/978-3-319-50862-7_4 |2 doi |
024 | 7 | _ | |a 0302-9743 |2 ISSN |
024 | 7 | _ | |a 1611-3349 |2 ISSN |
037 | _ | _ | |a FZJ-2017-00070 |
082 | _ | _ | |a 004 |
100 | 1 | _ | |a Hahne, Jan |0 P:(DE-HGF)0 |b 0 |e Corresponding author |
111 | 2 | _ | |a International Workshop on Brain-Inspired Computing |g BrainComp 2015 |c Cetraro |d 2015-07-06 - 2015-07-10 |w Italy |
245 | _ | _ | |a Including Gap Junctions into Distributed Neuronal Network Simulations |
260 | _ | _ | |a Cham |c 2016 |b Springer International Publishing |
295 | 1 | 0 | |a Brain-Inspired Computing / Amunts, Katrin (Editor) ; Cham : Springer International Publishing, 2016, Chapter 4 ; ISSN: 0302-9743=1611-3349 ; ISBN: 978-3-319-50861-0=978-3-319-50862-7 ; doi:10.1007/978-3-319-50862-7 |
300 | _ | _ | |a 43 - 57 |
336 | 7 | _ | |a CONFERENCE_PAPER |2 ORCID |
336 | 7 | _ | |a Conference Paper |0 33 |2 EndNote |
336 | 7 | _ | |a INPROCEEDINGS |2 BibTeX |
336 | 7 | _ | |a conferenceObject |2 DRIVER |
336 | 7 | _ | |a Output Types/Conference Paper |2 DataCite |
336 | 7 | _ | |a Contribution to a conference proceedings |b contrib |m contrib |0 PUB:(DE-HGF)8 |s 1570522904_2021 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Contribution to a book |0 PUB:(DE-HGF)7 |2 PUB:(DE-HGF) |m contb |
490 | 0 | _ | |a Lecture Notes in Computer Science |v 10087 |
520 | _ | _ | |a Contemporary simulation technology for neuronal networks enables the simulation of brain-scale networks using neuron models with a single or a few compartments. However, distributed simulations at full cell density are still lacking the electrical coupling between cells via so called gap junctions. This is due to the absence of efficient algorithms to simulate gap junctions on large parallel computers. The difficulty is that gap junctions require an instantaneous interaction between the coupled neurons, whereas the efficiency of simulation codes for spiking neurons relies on delayed communication. In a recent paper [15] we describe a technology to overcome this obstacle. Here, we give an overview of the challenges to include gap junctions into a distributed simulation scheme for neuronal networks and present an implementation of the new technology available in the NEural Simulation Tool (NEST 2.10.0). Subsequently we introduce the usage of gap junctions in model scripts as well as benchmarks assessing the performance and overhead of the technology on the supercomputers JUQUEEN and K computer. |
536 | _ | _ | |a 511 - Computational Science and Mathematical Methods (POF3-511) |0 G:(DE-HGF)POF3-511 |c POF3-511 |x 0 |f POF III |
536 | _ | _ | |a 574 - Theory, modelling and simulation (POF3-574) |0 G:(DE-HGF)POF3-574 |c POF3-574 |x 1 |f POF III |
536 | _ | _ | |a SMHB - Supercomputing and Modelling for the Human Brain (HGF-SMHB-2013-2017) |0 G:(DE-Juel1)HGF-SMHB-2013-2017 |c HGF-SMHB-2013-2017 |x 2 |f SMHB |
536 | _ | _ | |a HBP SGA1 - Human Brain Project Specific Grant Agreement 1 (720270) |0 G:(EU-Grant)720270 |c 720270 |x 3 |f H2020-Adhoc-2014-20 |
536 | _ | _ | |a Brain-Scale Simulations (jinb33_20121101) |0 G:(DE-Juel1)jinb33_20121101 |c jinb33_20121101 |x 4 |f Brain-Scale Simulations |
536 | _ | _ | |a Scalable solvers for linear systems and time-dependent problems (hwu12_20141101) |0 G:(DE-Juel1)hwu12_20141101 |c hwu12_20141101 |x 5 |f Scalable solvers for linear systems and time-dependent problems |
536 | _ | _ | |a SLNS - SimLab Neuroscience (Helmholtz-SLNS) |0 G:(DE-Juel1)Helmholtz-SLNS |c Helmholtz-SLNS |x 6 |
536 | _ | _ | |0 G:(DE-Juel-1)ATMLPP |a ATMLPP - ATML Parallel Performance (ATMLPP) |c ATMLPP |x 7 |
588 | _ | _ | |a Dataset connected to CrossRef Book Series |
700 | 1 | _ | |a Helias, Moritz |0 P:(DE-Juel1)144806 |b 1 |u fzj |
700 | 1 | _ | |a Kunkel, Susanne |0 P:(DE-Juel1)151364 |b 2 |u fzj |
700 | 1 | _ | |a Igarashi, Jun |0 P:(DE-HGF)0 |b 3 |
700 | 1 | _ | |a Kitayama, Itaru |0 P:(DE-HGF)0 |b 4 |
700 | 1 | _ | |a Wylie, Brian |0 P:(DE-Juel1)132302 |b 5 |u fzj |
700 | 1 | _ | |a Bolten, Matthias |0 P:(DE-HGF)0 |b 6 |
700 | 1 | _ | |a Frommer, Andreas |0 P:(DE-HGF)0 |b 7 |
700 | 1 | _ | |a Diesmann, Markus |0 P:(DE-Juel1)144174 |b 8 |u fzj |
773 | _ | _ | |a 10.1007/978-3-319-50862-7_4 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/825758/files/chp_10.1007_978-3-319-50862-7_4.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:825758 |p openaire |p VDB |p ec_fundedresources |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)144806 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)151364 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)132302 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)144174 |
913 | 1 | _ | |a DE-HGF |b Key Technologies |1 G:(DE-HGF)POF3-510 |0 G:(DE-HGF)POF3-511 |2 G:(DE-HGF)POF3-500 |v Computational Science and Mathematical Methods |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |l Supercomputing & Big Data |
913 | 1 | _ | |a DE-HGF |b Key Technologies |l Decoding the Human Brain |1 G:(DE-HGF)POF3-570 |0 G:(DE-HGF)POF3-574 |2 G:(DE-HGF)POF3-500 |v Theory, modelling and simulation |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |
914 | 1 | _ | |y 2016 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a No Authors Fulltext |0 StatID:(DE-HGF)0550 |2 StatID |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
920 | 1 | _ | |0 I:(DE-Juel1)INM-6-20090406 |k INM-6 |l Computational and Systems Neuroscience |x 0 |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |k JSC |l Jülich Supercomputing Center |x 1 |
920 | 1 | _ | |0 I:(DE-82)080010_20140620 |k JARA-BRAIN |l JARA-BRAIN |x 2 |
980 | _ | _ | |a contrib |
980 | _ | _ | |a VDB |
980 | _ | _ | |a contb |
980 | _ | _ | |a I:(DE-Juel1)INM-6-20090406 |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a I:(DE-82)080010_20140620 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IAS-6-20130828 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|