001     825768
005     20210129225426.0
024 7 _ |a 10.1021/acsami.6b02425
|2 doi
024 7 _ |a 1944-8244
|2 ISSN
024 7 _ |a 1944-8252
|2 ISSN
024 7 _ |a WOS:000376825800068
|2 WOS
024 7 _ |a 2128/18668
|2 Handle
037 _ _ |a FZJ-2017-00073
082 _ _ |a 540
100 1 _ |a Schulte-Braucks, C.
|0 P:(DE-Juel1)161530
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Low Temperature Deposition of High-k/Metal Gate Stacks on High-Sn Content (Si)GeSn-Alloys
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1527159461_12643
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a (Si)GeSn is an emerging group IV alloy system offering new exciting properties, with great potential for low power electronics due to the fundamental direct band gap and prospects as high mobility material. In this Article, we present a systematic study of HfO2/TaN high-k/metal gate stacks on (Si)GeSn ternary alloys and low temperature processes for large scale integration of Sn based alloys. Our investigations indicate that SiGeSn ternaries show enhanced thermal stability compared to GeSn binaries, allowing the use of the existing Si technology. Despite the multielemental interface and large Sn content of up to 14 atom %, the HfO2/(Si)GeSn capacitors show small frequency dispersion and stretch-out. The formed TaN/HfO2/(Si)GeSn capacitors present a low leakage current of 2 × 10–8 A/cm2 at −1 V and a high breakdown field of ∼8 MV/cm. For large Sn content SiGeSn/GeSn direct band gap heterostructures, process temperatures below 350 °C are required for integration. We developed an atomic vapor deposition process for TaN metal gate on HfO2 high-k dielectric and validated it by resistivity as well as temperature and frequency dependent capacitance–voltage measurements of capacitors on SiGeSn and GeSn. The densities of interface traps are deduced to be in the low 1012 cm–2 eV–1 range and do not depend on the Sn-concentration. The new processes developed here are compatible with (Si)GeSn integration in large scale applications.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
536 _ _ |a E2SWITCH - Energy Efficient Tunnel FET Switches and Circuits (619509)
|0 G:(EU-Grant)619509
|c 619509
|f FP7-ICT-2013-11
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a von den Driesch, N.
|0 P:(DE-Juel1)161247
|b 1
|u fzj
700 1 _ |a Glass, S.
|0 P:(DE-Juel1)165997
|b 2
|u fzj
700 1 _ |a Tiedemann, Andreas
|0 P:(DE-Juel1)128639
|b 3
|u fzj
700 1 _ |a Breuer, Uwe
|0 P:(DE-Juel1)133840
|b 4
|u fzj
700 1 _ |a Besmehn, A.
|0 P:(DE-Juel1)133839
|b 5
|u fzj
700 1 _ |a Hartmann, J.-M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ikonic, Z.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Zhao, Qing-Tai
|0 P:(DE-Juel1)128649
|b 8
|u fzj
700 1 _ |a Mantl, S.
|0 P:(DE-Juel1)128609
|b 9
|u fzj
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 10
|u fzj
773 _ _ |a 10.1021/acsami.6b02425
|g Vol. 8, no. 20, p. 13133 - 13139
|0 PERI:(DE-600)2467494-1
|n 20
|p 13133 - 13139
|t ACS applied materials & interfaces
|v 8
|y 2016
|x 1944-8244
856 4 _ |u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825768/files/acsami.6b02425.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825768/files/MOScap_process_ACS_V15_final.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825768
|p openaire
|p open_access
|p driver
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161247
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165997
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)128639
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)133840
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)133839
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)128649
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)128609
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)125569
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS APPL MATER INTER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)ZEA-3-20090406
|k ZEA-3
|l Analytik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)ZEA-3-20090406
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21