000825769 001__ 825769
000825769 005__ 20210129225426.0
000825769 0247_ $$2doi$$a10.1149/2.0061604jss
000825769 0247_ $$2ISSN$$a2162-8769
000825769 0247_ $$2ISSN$$a2162-8777
000825769 0247_ $$2WOS$$aWOS:000373212500007
000825769 037__ $$aFZJ-2017-00074
000825769 082__ $$a540
000825769 1001_ $$0P:(DE-HGF)0$$aMadia, O.$$b0$$eCorresponding author
000825769 245__ $$aSaturation Photo-Voltage Methodology for Semiconductor/Insulator Interface Trap Spectroscopy
000825769 260__ $$aPennington, NJ$$bECS$$c2016
000825769 3367_ $$2DRIVER$$aarticle
000825769 3367_ $$2DataCite$$aOutput Types/Journal article
000825769 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483957742_19245
000825769 3367_ $$2BibTeX$$aARTICLE
000825769 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825769 3367_ $$00$$2EndNote$$aJournal Article
000825769 520__ $$aThe presence of large densities of electrically active defects is still an unsolved issue for future high-mobility/high-k CMOS device technologies. This relates to degraded device performance and reliability. Regrettably, conventional admittance-based characterization techniques often fail when applied to non-Si based devices. Among others, enhanced generation of minority carriers and much longer defect time constants make their results inaccurate. Rather than of seeking to adapt commonly-used techniques, we instead aim at direct measuring the semiconductor surface potential by means of the Saturation surface PhotoVoltage (SPV) technique. This approach allows for a DIT estimation which is not limited by the trap response time or hindered by minority carrier generation. Moreover, the DIT can be estimated over the whole bandgap regardless of sample doping type. We here report several case studies in support of the proposed approach. We will also show that SPV can be applied for the characterization of multi-layered Ge and III-V devices incorporating high-k insulators.
000825769 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000825769 588__ $$aDataset connected to CrossRef
000825769 7001_ $$0P:(DE-HGF)0$$aAfanas'ev, V. V.$$b1
000825769 7001_ $$0P:(DE-HGF)0$$aCott, D.$$b2
000825769 7001_ $$0P:(DE-HGF)0$$aArimura, H.$$b3
000825769 7001_ $$0P:(DE-Juel1)161530$$aSchulte-Braucks, C.$$b4
000825769 7001_ $$0P:(DE-HGF)0$$aLin, H. C.$$b5
000825769 7001_ $$0P:(DE-Juel1)125569$$aBuca, D.$$b6
000825769 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b7
000825769 7001_ $$0P:(DE-HGF)0$$aNyns, L.$$b8
000825769 7001_ $$0P:(DE-HGF)0$$aIvanov, T.$$b9
000825769 7001_ $$0P:(DE-HGF)0$$aCuypers, D.$$b10
000825769 7001_ $$0P:(DE-HGF)0$$aStesmans, A.$$b11
000825769 773__ $$0PERI:(DE-600)2674149-0$$a10.1149/2.0061604jss$$gVol. 5, no. 4, p. P3031 - P3036$$n4$$pP3031 - P3036$$tECS journal of solid state science and technology$$v5$$x2162-8777$$y2016
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.pdf$$yRestricted
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.gif?subformat=icon$$xicon$$yRestricted
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825769 8564_ $$uhttps://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825769 909CO $$ooai:juser.fz-juelich.de:825769$$pVDB
000825769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161530$$aForschungszentrum Jülich$$b4$$kFZJ
000825769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b6$$kFZJ
000825769 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b7$$kFZJ
000825769 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000825769 9141_ $$y2016
000825769 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825769 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825769 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bECS J SOLID STATE SC : 2015
000825769 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825769 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825769 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825769 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825769 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825769 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825769 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825769 920__ $$lyes
000825769 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000825769 980__ $$ajournal
000825769 980__ $$aVDB
000825769 980__ $$aUNRESTRICTED
000825769 980__ $$aI:(DE-Juel1)PGI-9-20110106