001     825769
005     20210129225426.0
024 7 _ |a 10.1149/2.0061604jss
|2 doi
024 7 _ |a 2162-8769
|2 ISSN
024 7 _ |a 2162-8777
|2 ISSN
024 7 _ |a WOS:000373212500007
|2 WOS
037 _ _ |a FZJ-2017-00074
082 _ _ |a 540
100 1 _ |a Madia, O.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Saturation Photo-Voltage Methodology for Semiconductor/Insulator Interface Trap Spectroscopy
260 _ _ |a Pennington, NJ
|c 2016
|b ECS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483957742_19245
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The presence of large densities of electrically active defects is still an unsolved issue for future high-mobility/high-k CMOS device technologies. This relates to degraded device performance and reliability. Regrettably, conventional admittance-based characterization techniques often fail when applied to non-Si based devices. Among others, enhanced generation of minority carriers and much longer defect time constants make their results inaccurate. Rather than of seeking to adapt commonly-used techniques, we instead aim at direct measuring the semiconductor surface potential by means of the Saturation surface PhotoVoltage (SPV) technique. This approach allows for a DIT estimation which is not limited by the trap response time or hindered by minority carrier generation. Moreover, the DIT can be estimated over the whole bandgap regardless of sample doping type. We here report several case studies in support of the proposed approach. We will also show that SPV can be applied for the characterization of multi-layered Ge and III-V devices incorporating high-k insulators.
536 _ _ |a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|0 G:(DE-HGF)POF3-521
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Afanas'ev, V. V.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Cott, D.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Arimura, H.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schulte-Braucks, C.
|0 P:(DE-Juel1)161530
|b 4
700 1 _ |a Lin, H. C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Buca, D.
|0 P:(DE-Juel1)125569
|b 6
700 1 _ |a von den Driesch, Nils
|0 P:(DE-Juel1)161247
|b 7
700 1 _ |a Nyns, L.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Ivanov, T.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Cuypers, D.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Stesmans, A.
|0 P:(DE-HGF)0
|b 11
773 _ _ |a 10.1149/2.0061604jss
|g Vol. 5, no. 4, p. P3031 - P3036
|0 PERI:(DE-600)2674149-0
|n 4
|p P3031 - P3036
|t ECS journal of solid state science and technology
|v 5
|y 2016
|x 2162-8777
856 4 _ |u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825769/files/ECS%20J.%20Solid%20State%20Sci.%20Technol.-2016-Madia-P3031-6.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825769
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161530
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)125569
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161247
913 1 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-521
|2 G:(DE-HGF)POF3-500
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ECS J SOLID STATE SC : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21