001     825798
005     20210129225431.0
024 7 _ |a 10.1021/acs.jpcc.6b00566
|2 doi
024 7 _ |a 1932-7447
|2 ISSN
024 7 _ |a 1932-7455
|2 ISSN
024 7 _ |a WOS:000373416500044
|2 WOS
037 _ _ |a FZJ-2017-00100
082 _ _ |a 540
100 1 _ |a Kakudate, Toshiyuki
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Electronic Structures of Quaterthiophene and Septithiophene on Cu(111): Spatial Distribution of Adsorption-Induced States Studied by STM and DFT Calculation
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483610448_4018
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The oligothiophene molecule family has a tunable energy gap between the highest occupied and lowest unoccupied molecular orbitals (HOMO and LUMO) as the function of the number of thiophene units. This tunability is of great use to controlling carrier injection at the molecule/electrode interface in molecule-based electronic devices. We investigate quaterthiophene (4T) and septithiophene (7T) molecules adsorbed on Cu(111) surfaces by scanning tunneling microscopy and spectroscopy (STM and STS) at room temperature. Both oligothiophene molecules form one-dimensional (1D) chain structures on Cu(111), and each molecule in the 1D structures is observed as a row of bright ovals corresponding to thiophene units. Observed features of 4T and 7T molecules differ from those expected from the HOMO and LUMO of the free-standing molecules, and density-functional calculations of a 4T molecule together with a Cu(111) surface reproduce the experimental STM images as they reflect characteristic spatial distribution of adsorption-induced states. In other words, the adsorption-induced states are spatially protruding out from the molecule and not completely localized in the space between the molecule and the Cu(111) surface.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tsukamoto, Shigeru
|0 P:(DE-Juel1)131010
|b 1
700 1 _ |a Kubo, Osamu
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Nakaya, Masato
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Nakayama, Tomonobu
|0 P:(DE-HGF)0
|b 4
773 _ _ |a 10.1021/acs.jpcc.6b00566
|g Vol. 120, no. 12, p. 6681 - 6688
|0 PERI:(DE-600)2256522-X
|n 12
|p 6681 - 6688
|t The @journal of physical chemistry / C
|v 120
|y 2016
|x 1932-7455
856 4 _ |u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825798/files/acs.jpcc.6b00566.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825798
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131010
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J PHYS CHEM C : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21