001     825799
005     20230426083140.0
024 7 _ |a 10.1103/PhysRevB.93.045421
|2 doi
024 7 _ |a 0163-1829
|2 ISSN
024 7 _ |a 0556-2805
|2 ISSN
024 7 _ |a 1094-1622
|2 ISSN
024 7 _ |a 1095-3795
|2 ISSN
024 7 _ |a 1098-0121
|2 ISSN
024 7 _ |a 1550-235X
|2 ISSN
024 7 _ |a 2469-9950
|2 ISSN
024 7 _ |a 2469-9969
|2 ISSN
024 7 _ |a 2128/13388
|2 Handle
024 7 _ |a WOS:000368488000007
|2 WOS
024 7 _ |a altmetric:4730713
|2 altmetric
037 _ _ |a FZJ-2017-00101
082 _ _ |a 530
100 1 _ |a Ono, Tomoya
|0 P:(DE-Juel1)130874
|b 0
|e Corresponding author
245 _ _ |a Real-space method for first-principles electron transport calculations: Self-energy terms of electrodes for large systems
260 _ _ |a Woodbury, NY
|c 2016
|b Inst.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483610641_4023
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We present a fast and stable numerical technique to obtain the self-energy terms of electrodes for first-principles electron transport calculations. Although first-principles calculations based on the real-space finite-difference method are advantageous for execution on massively parallel computers, large-scale transport calculations are hampered by the computational cost and numerical instability of the computation of the self-energy terms. Using the orthogonal complement vectors of the space spanned by the generalized Bloch waves that actually contribute to transport phenomena, the computational accuracy of transport properties is significantly improved with a moderate computational cost. To demonstrate the efficiency of the present technique, the electron transport properties of a Stone-Wales (SW) defect in graphene and silicene are examined. The resonance scattering of the SW defect is observed in the conductance spectrum of silicene since the σ∗ state of silicene lies near the Fermi energy. In addition, we found that one conduction channel is sensitive to a defect near the Fermi energy, while the other channel is hardly affected. This characteristic behavior of the conduction channels is interpreted in terms of the bonding network between the bilattices of the honeycomb structure in the formation of the SW defect. The present technique enables us to distinguish the different behaviors of the two conduction channels in graphene and silicene owing to its excellent accuracy.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
542 _ _ |i 2016-01-22
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tsukamoto, Shigeru
|0 P:(DE-Juel1)131010
|b 1
773 1 8 |a 10.1103/physrevb.93.045421
|b American Physical Society (APS)
|d 2016-01-22
|n 4
|p 045421
|3 journal-article
|2 Crossref
|t Physical Review B
|v 93
|y 2016
|x 2469-9950
773 _ _ |a 10.1103/PhysRevB.93.045421
|g Vol. 93, no. 4, p. 045421
|0 PERI:(DE-600)2844160-6
|n 4
|p 045421
|t Physical review / B
|v 93
|y 2016
|x 2469-9950
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825799/files/PhysRevB.93.045421.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825799
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131010
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS REV B : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 1 _ |a FullTexts
999 C 5 |1 L. V. Keldysh
|y 1964
|2 Crossref
|o L. V. Keldysh 1964
999 C 5 |1 L. V. Keldysh
|y 1965
|2 Crossref
|o L. V. Keldysh 1965
999 C 5 |a 10.1103/PhysRevB.65.165401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.11936
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.63.245407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.155301
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0301-0104(02)00446-9
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.44.8017
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.52.5335
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.51.5278
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.59.2267
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.66.161402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.67.195315
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1142/9781860946530
|1 K. Hirose
|2 Crossref
|9 -- missing cx lookup --
|y 2005
999 C 5 |a 10.1103/PhysRevB.72.035450
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.86.195406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.72.1240
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.82.5016
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.72.085115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.82.205115
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 Y. Hasegawa
|y 2011
|2 Crossref
|t Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC'11
|o Y. Hasegawa Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis, SC'11 2011
999 C 5 |a 10.1103/PhysRevLett.112.046401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/0009-2614(86)80661-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.4997
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0377-0427(03)00565-X
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0927-0256(98)00074-3
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.43.1993
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.5048
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.136.B864
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1102896
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.14916
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.3495786
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.susc.2006.09.030
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s10948-008-0427-8
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.110.076801
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.96.046806
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.77.115453
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.50.17953
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.80.033407
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.235422
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.4236/graphene.2013.22011
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.55.1665
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.46.6671
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.77.3865
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.78.1396
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRev.140.A1133
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.26.5433
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.23.6851
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21