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We present a fast and stable numerical technique to obtain the self-energy terms of electrodes for first-principles

electron transport calculations. Although first-principles calculations based on the real-space finite-difference

method are advantageous for execution on massively parallel computers, large-scale transport calculations are

hampered by the computational cost and numerical instability of the computation of the self-energy terms.

Using the orthogonal complement vectors of the space spanned by the generalized Bloch waves that actually

contribute to transport phenomena, the computational accuracy of transport properties is significantly improved

with a moderate computational cost. To demonstrate the efficiency of the present technique, the electron transport

properties of a Stone-Wales (SW) defect in graphene and silicene are examined. The resonance scattering of the

SW defect is observed in the conductance spectrum of silicene since the σ ∗ state of silicene lies near the Fermi

energy. In addition, we found that one conduction channel is sensitive to a defect near the Fermi energy, while the

other channel is hardly affected. This characteristic behavior of the conduction channels is interpreted in terms

of the bonding network between the bilattices of the honeycomb structure in the formation of the SW defect. The

present technique enables us to distinguish the different behaviors of the two conduction channels in graphene

and silicene owing to its excellent accuracy.

DOI: 10.1103/PhysRevB.93.045421

I. INTRODUCTION

Recently quantum-transport calculations have become an
important tool for investigating the physics and chemistry
of nanoscale systems because they are expected to exhibit
considerably different transport properties from those of
classical conductors. Owing to the complexity of the problem,
such studies are strongly dependent on the existence of reliable
numerical treatments based on first-principles approaches. A
number of first-principles methods for calculating the electron
transport properties of nanoscale systems have been proposed
so far. They are roughly categorized into two approaches.
One approach uses the nonequilibrium Green’s function
(NEGF). The relation between the conductance and Green’s
function has been derived within the nonequilibrium Keldysh
formalism [1]. This approach has been used extensively
in connection with tight-binding models and first-principles
methods employing localized basis sets consisting of either
atomic orbitals [2–5] or Gaussians [6]. The other approach
is to use a wave-function-matching method [7–13], in which
the transmission and reflection coefficients of scattering wave
functions are computed. This approach has been employed by
combining it with techniques in which real-space grids and/or
plane-wave basis sets are used to describe wave functions and
potentials.

When these two approaches are compared, it is advanta-
geous to treat the charge density in the equilibrium regime of
energy by the procedure of the Green’s function method with
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the energy of a nonreal number. On the other hand, the scat-
tering wave functions computed in a wave-function-matching
method provide a direct real-space picture of the scattering
process. The wave-function-matching methods are related
to the Green’s function method in a mathematically strict
manner [13] and the similar expression for the relation between
the wave-function-matching and the Green’s function methods
is also demonstrated [14,15]. In addition, the wave-function-
matching methods can be combined straightforwardly in
the real-space finite-difference (RSFD) approach [13,16,17],
which is one of the methods using real-space grids. Fur-
thermore, recent cutting-edge computers worldwide rely on
massively parallel architectures, and the RSFD approach is
one of the most promising methods of executing large-scale
simulations on massively parallel computers [18,19]. Thus,
it is important to develop rigorous and efficient numerical
schemes combining the advantages of the Green’s function
and wave-function-matching methods based on the RSFD ap-
proach to perform large-scale first-principles electron transport
calculations.

In the Green’s function formalism, the perturbed Green’s
functions of the transition region sandwiched between elec-
trodes are computed using self-energy terms of electrodes. In
our previous study [15] we proposed a procedure to obtain the
self-energy terms from the ratio matrices, which are constituted
by the propagating and evanescent waves, i.e., the generalized
Bloch waves, of electrodes and originally introduced in one
of the wave-function-matching methods, the overbridging
boundary-matching method [12,13], for the RSFD approach.
Although the computational cost for the self-energy terms is
greatly reduced, this procedure requires all the generalized

2469-9950/2016/93(4)/045421(10) 045421-1 ©2016 American Physical Society



TOMOYA ONO AND SHIGERU TSUKAMOTO PHYSICAL REVIEW B 93, 045421 (2016)

Bloch waves of electrodes, and the calculation of rapidly
varying evanescent waves is computationally demanding and
numerically unstable [13,15]. Sørensen et al. [5] proposed
a method in which rapidly varying evanescent waves are
excluded by introducing a cutoff for evanescent waves λmin in
the construction of self-energy terms because rapidly varying
evanescent waves included in the generalized Bloch waves
do not contribute to electron transport. They demonstrated
the efficiency of their method by calculating the transport
properties of small molecules. However, in the case of
large systems, the convergence of conductance with respect
to λmin is slow. To perform large-scale calculations in the
RSFD approach, we employ very large matrices for which
self-energy terms are calculated. In addition, to avoid the
problem of reduced accuracy arising from the incompleteness
of the basis sets in the methods using localized basis sets,
the size of the matrices is also increased. Therefore, fast
and accurate computation of the self-energy terms for large
systems is indispensable to ensure the reliability of transport
calculations.

In this paper we propose an efficient numerical tech-
nique to calculate the self-energy terms of electrodes for
first-principles transport calculations. Using the orthogonal
complement vectors of the space spanned by the Bloch waves
containing the propagating waves and moderately varying
evanescent waves, we can overcome the numerical difficulty in
treating rapidly varying evanescent waves and in constructing
self-energy terms. The computational accuracy of transport
properties is significantly improved by the present technique.
As an application to demonstrate the potential power of the
present technique, the transport properties of a Stone-Wales
(SW) defect [20] in graphene and silicene are examined. In
addition to industrial and scientific interest in two-dimensional
materials with a honeycomb structure, the comparison between
graphene and silicene is of importance because the electron
transport properties of an SW defect in silicene have not
been intensively investigated so far in spite of its advantages
over graphene. A sharp dip due to resonance scattering of
the SW defect is observed in the conductance spectrum of
silicene because the σ ∗ state lies near the Fermi energy, while
there are no strong dips in the spectrum of graphene in the
calculated energy range. In addition, there are two conduction
channels near the Fermi energy in graphene and silicene.
One conduction channel is less sensitive to the SW defect
at the Fermi energy while the electrons of the other channel
are significantly scattered by the defect. This characteristic
behavior of the transport properties of these two conduction
channels is explained by the bonding arrangement of the
bilattice of the honeycomb structure. Owing to the excellent
accuracy of the transmission coefficients obtained using the
present technique, we can distinguish the different behaviors
of these two conduction channels.

The rest of this paper is organized as follows. In Sec. II
we state the problem of accuracy in transport calculations and
introduce the procedure to improve accuracy together with an
example demonstrating the performance of the present tech-
nique. The transport properties of an SW defect in graphene
and silicene are presented in Sec. III and we summarize the
present technique in Sec. IV. Finally, the transport calculation

FIG. 1. Schematic representation of a periodic bulk. ζM
l repre-

sents the z coordinate at the lth grid plane group in the Mth unit cell.

The case for Nf = 2 is illustrated as an example.

method using the RSFD approach is given in the Appendix to
assist understanding of the present technique.

II. COMPUTATIONAL PROCEDURE TO OBTAIN

SELF-ENERGY TERMS

A. Self-energy terms from generalized Bloch waves

In this subsection we briefly introduce the computational
scheme to obtain the self-energy terms of electrodes, which
is proposed in Ref. [15]. The computational model used to
obtain the generalized Bloch waves is illustrated in Fig. 1,
where the atomic layers of a crystalline bulk are periodically
repeated. Although we assume that electrons flow along the
z direction from the left to right, the opposite case can be
derived in a similar manner. The system is periodic in the x

and y directions. A generalized z-coordinate ζl is used instead
of zl because a couple of grid planes are involved in the wave-
function and Green’s-function matching procedures when a
higher-order finite-difference approximation is employed. ζM

l

represents the z coordinate at the lth grid plane group in
the Mth unit cell. The matching plane connecting the left
(right) electrode and the transition region is between ζM

mb

(ζM−1
1 ) and ζM+1

1 (ζM
mb ). In practical calculations, the order

of the finite-difference approximation Nf is taken so as to
cover the nonzero elements attributed to nonlocal parts of the
pseudopotential at the matching plane and corresponds to the
number of grid planes included in ζl . The numbers of grid
points in the x, y, and z directions are Nx , Ny , and Nf mb,
respectively. By applying the generalized Bloch condition, we
can obtain the following generalized eigenvalue problem for
the complex energy Z(= E + iη):

�1(Z)

[

�b
n

(

ζM−1
mb ,Z

)

�b
n

(

ζM+1
1 ,Z

)

]

= λn(Z)�2(Z)

[

�b
n

(

ζM−1
mb ,Z

)

�b
n

(

ζM+1
1 ,Z

)

]

, (1)
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where

�1(Z) =

[

�
(

ζM
mb ,ζ

M
1 ; Z

)

Bb
(

ζM
mb

)†
�

(

ζM
mb ,ζ

M
mb ; Z

)

Bb
(

ζM
mb

)

0 I

]

,

�2(Z) =

[

I 0

�
(

ζM
1 ,ζM

1 ; Z
)

Bb
(

ζM
mb

)†
�

(

ζM
1 ,ζM

mb ; Z
)

Bb
(

ζM
mb

)

]

.

(2)

Here �(ζM
k ,ζM

l ; Z) is the N (= Nx × Ny × Nf )-dimensional
(k,l) block-matrix element of the Green’s function of the
truncated part of the periodic Hamiltonian in the Mth unit
cell and Bb(ζM

mb ) is a nonzero N -dimensional block-matrix
element consisting of the coefficients of the finite-difference
approximation and the nonlocal parts of the pseudopotential. In
addition, �b

n(ζM
l ,Z) corresponds to N -dimensional columnar

vectors of the generalized Bloch waves at ζM
l , λn(Z) is the

Bloch factor eikn,zLz with kn,z, and Lz being the z component
of the Bloch vector and the length of the unit cell in the
z direction, respectively, and the superscript b indicates the
matrices and vectors used to obtain the self-energy terms of the
bulk electrodes. The generalized Bloch waves with |λn| = 1
represent propagating waves while the waves with |λn| > 1
(|λn| < 1) are leftward- (rightward-)decreasing evanescent
waves. Note that |λn| �= 1 when η > 0 [21].

Now we introduce N -dimensional matrices Qb,p(ζM
l ; Z)

and Qb,q(ζM
l ; Z), which gather the N generalized Bloch waves

{�
b,p
n (ζM

l ; Z)} and {�
b,q
n (ζM

l ; Z)}, n = 1,2, . . . ,N , for Z with
|λn| > 1 and |λn| < 1, respectively:

Qb,p
(

ζM
l ; Z

)

=
[

�
b,p

1

(

ζM
l ; Z

)

,�
b,p

2

(

ζM
l ; Z

)

, . . . ,�
b,p

N

(

ζM
l ; Z

)]

,

Qb,q
(

ζM
l ; Z

)

=
[

�
b,q

1

(

ζM
l ; Z

)

,�
b,q

2

(

ζM
l ; Z

)

, . . . ,�
b,q

N

(

ζM
l ; Z

)]

. (3)

The self-energy terms of the left and right electrodes are
expressed as

	b
L

(

ζM
l ; Z

)

= Bb
(

ζM
l−1

)†
Rb,p

(

ζM
l ; Z

)

,
(4)

	b
R

(

ζM
l ; Z

)

= Bb
(

ζM
l )Rb,q

(

ζM
l+1; Z

)

,

respectively, where Rb,p(ζM
l ; Z) and Rb,q (ζM

l ; Z) are the ratio
matrices defined as follows:

Rb,p
(

ζM
l ; Z

)

= Qb,p
(

ζM
l−1; Z

)

Qb,p
(

ζM
l ; Z

)−1
,

(5)
Rb,q

(

ζM
l ; Z

)

= Qb,q
(

ζM
l ; Z

)

Qb,q
(

ζM
l−1; Z

)−1
.

According to the generalized Bloch boundary condi-
tion, it is obvious that Rb,A(ζM

l ; Z) = Rb,A(ζM+1
l ; Z) and

Q
b,A
1 (ζM+1

l ; Z) = 
Q
b,A
1 (ζM

l ; Z) [12], where A = p and q,
and


 =







λ1 0
. . .

0 λN






. (6)

Taking the limit for the complex energy, we have

lim
η→0+

�b,p
n

(

ζM
l ; E + iη

)

= �b,ref
n

(

ζM
l ; E

)

,

(7)
lim

η→0+
�b,q

n

(

ζM
l ; E + iη

)

= �b,tra
n

(

ζM
l ; E

)

.

Then, the following matrices are obtained straightforwardly:

lim
η→0+

Qb,p
(

ζM
k ,ζM

l ; E + iη
)

= Qb,ref
(

ζM
k ,ζM

l ; E
)

,

lim
η→0+

Qb,q
(

ζM
k ,ζM

l ; E + iη
)

= Qb,tra
(

ζM
k ,ζM

l ; E
)

,

lim
η→0+

Rb,p
(

ζM
k ,ζM

l ; E + iη
)

= Rb,ref
(

ζM
k ,ζM

l ; E
)

,

(8)
lim

η→0+
Rb,q

(

ζM
k ,ζM

l ; E + iη
)

= Rb,tra
(

ζM
k ,ζM

l ; E
)

,

	
b,r
L

(

ζM
l ; E

)

= Bb
(

ζM
l−1

)†
Rb,ref

(

ζM
l ; E

)

,

	
b,r
R

(

ζM
l ; E

)

= Bb
(

ζM
l

)†
Rb,tra

(

ζM
l+1; E

)

.

Here 	
b,r
L (ζM

l ; E) and 	
b,r
R (ζM

l ; E) are the retarded self-energy
term of left and right electrodes, respectively. The ratio
matrix Rb,in for the incident waves from the left electrode
is introduced along similar lines into the definition of Rref:

Rb,in
(

ζM
l ; E

)

= Qb,in
(

ζM
l−1; E

)

Qb,in
(

ζM
l ; E

)−1
, (9)

where

Qb,in
(

ζM
l ; E

)

=
[

�
b,in
1

(

ζM
l ; E

)

,�
b,in
2

(

ζM
l ; E

)

, . . . ,�
b,in
N

(

ζM
l ; E

)]

, (10)

which includes not only ordinary right-propagating incident
Bloch waves but also leftward-decreasing evanescent waves.
In addition, the relationship between the retarded self-energy

term 	
b,r
L (ζM

l ; E) and Rb,in(ζM
l ; E) is

	
b,r
L

(

ζM
l ; E

)†
= Bb

(

ζM
l−1

)†
Rb,in

(

ζM
l ; E

)

. (11)

Apart from the numerical difficulty in solving the generalized
eigenvalue problem of Eq. (1) for rapidly varying evanescent
waves, which was reported in Ref. [12], the self-energy terms
can be obtained by Eq. (4).

B. Statement of the problem

Although the relationship between the generalized Bloch
waves and self-energy terms introduced in the preceding
subsection has contributed to reducing the computational cost
of the self-energy terms from O(N3mb3) to O(N3), as shown
in Ref. [15], the computation of the eigenvalue problems to
obtain the generalized Bloch waves becomes a bottleneck
when larger systems are treated. From a numerical perspective,
it is convenient to compute only the generalized Bloch waves
from Eq. (1) that have eigenvalues λ within a specific interval,

|λmin| � |λ| �
∣

∣λ−1
min

∣

∣, (12)

for a reasonable choice of λmin. Evanescent waves with |λmin|

outside these regions are decaying or growing so rapidly that
their contribution is negligible. The decisive factor in choosing
λmin is that the generalized Bloch waves of electrodes must
be complete in the sense that they can fully represent the
transmitted and reflected waves. A couple of schemes to
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compute generalized Bloch waves within specific regions have
been proposed: one is the Arnoldi method for the quadratic
eigenvalue problem [5], and the other is the Sakurai-Sugiura
method [22] for the generalized eigenvalue problem of Eq. (1).
As long as the eigenstates are accurately calculated, the scheme
used does not result in any difference in practical calculations.

When the number of generalized Bloch waves used to
construct the matrix Qb,p(ζl ; Z)[Qb,q(ζl ; Z)] is smaller than
N , Qb,p(ζl ; Z)−1 [Qb,q(ζl ; Z)−1] in Eq. (5) is expressed as a
pseudoinverse matrix and the rank of the self-energy terms
is smaller than N . Since the rank of the coupling matrices
ŴL(ζ0; E) and ŴR(ζm+1; E), which are the imaginary parts of
the self-energy terms, is not equal to that of the perturbed
Green’s function Gr

T (ζk,ζl ; E) in Eq. (A7), the conductance is
far from that obtained using all the generalized Bloch waves
in some cases. In the wave-function-matching formalism, this
corresponds to the problem that the number of equations in the
simultaneous equations is larger than that of the unknowns, i.e.,
the transmission and reflection coefficients.

To demonstrate this problem, we calculate the transport
properties of a Na atomic wire, graphene, and silicene. In the
case of the Na wire, the transition region contains three atoms
and a grid spacing taken to be ∼ 0.5 bohr. The interatomic
distance is 5.7 bohrs and the atoms are aligned in a straight
line except for the central atom of the transition region, which
is replaced by an Al atom and shifted by 1.0 bohr in the
direction perpendicular to the wire. The norm-conserving
pseudopotentials [23] of Troullier and Martins [24] are
employed and the exchange correlation effect is treated by
the local density approximation [25] of density functional
theory (DFT) [26]. In the cases of graphene and silicene,
an SW defect is introduced at the center of the transition
region. The other computational conditions for graphene and
silicene are introduced in the next section. Figures 2 and 3
show the convergence of the conductance and transmission
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probability of the conduction channels with respect to |λ−1
min|,

respectively. Since the number of conduction channels in
the Na nanowire is one, the conductance corresponds to the
transmission probability of the first channel. In the case of
the Na wire, the conductance converges with respect to |λ−1

min|.
On the other hand, in the cases of graphene and silicene, the
accuracy of the conductance is not good when |λ−1

min| is not
sufficiently large and the convergence of the total conductance
is slow. In addition, when |λ−1

min| is large, the rapidly varying
evanescent waves also cause the degradation of numerical
accuracy as mentioned in the preceding subsection. Thus,
the degradation of the computational accuracy due to the
evanescent waves is serious when the systems become large.

The most general way to avoid this problem is to increase
the thickness of buffer layers of electrodes in the transition
region. When one unit cell of the electrodes is inserted
as a buffer layer, the Bloch factors are multiplied to the
coefficients according to the wave-function-matching formula
{see Eqs. (5) and (6) of Ref. [12]}. The coefficients for the
decreasing evanescent waves exponentially decrease as the
increases of the number of inserted unit cells in the buffer layer
because the amplitude of the Bloch factors for the decreasing
evanescent waves is less than one. However, this approach
is computationally demanding because the calculation of the
perturbed Green’s functions of the transition region is also
time consuming and requires a large amount of memory. In the
next subsection, a method in which the rank of the matrices
Qb,p(ζM

l ; Z) and Qb,q(ζM
l ; Z) is kept to N to circumvent the

problem is introduced.
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C. Computational method using orthogonal complement

vectors

The generalized eigenvalue problem of Eq. (1) suffers
from numerical error owing to the extremely large and small
absolute values of λ(Z) in some cases, which prevents us
from accurately computing the eigenstates. To improve the
accuracy of the ratio matrices, the following continued-fraction
equations are introduced {see Eq. (25) of Ref. [12]}:

Rb,p
(

ζM+1
1 ; Z

)

= �
(

ζM
mb ,ζ

M
mb ; Z

)

Bb
(

ζM
mb

)

+�
(

ζM
mb ,ζ

M
1 ; Z

)

Bb
(

ζM
mb

)†[
Rb,p

(

ζM
1 ; Z

)−1

−�
(

ζM
1 ,ζM

1 ; Z
)

Bb
(

ζM
mb

)†]−1

×�
(

ζM
1 ,ζM

mb ; Z
)

Bb
(

ζM
mb

)

,

Rb,q
(

ζM+1
1 ; Z

)

= �
(

ζM
1 ,ζM

1 ; Z
)

Bb
(

ζM
mb

)†

+�
(

ζM
1 ,ζM

mb ; Z
)

Bb
(

ζM
mb

)[

Rb,q
(

ζM+1
1 ; Z

)−1

−�
(

ζM
mb ,ζ

M
mb ; Z

)

Bb
(

ζM
mb

)]−1

×�
(

ζM
mb ,ζ

M
1 ; Z

)

Bb
(

ζM
mb

)†
. (13)

We propose a method of obtaining the self-energy terms by
solving the continued-fraction equations in a self-consistent
manner, the algorithm for which is given below. As shown in
the Appendix, only 	b

L(ζM
1 ; Z) and 	b

R(ζM
mb ; Z) are required

for the transport calculation.
Algorithm: solution of continued-fraction equations to

obtain 	b
L(ζM

1 ; Z).
(1) Solve the generalized eigenvalue problem of Eq. (1)

within the interval of |λmin| � |λ| � |λ−1
min| by the Sakurai-

Sugiura method [22].
(2) If η in the energy is zero, calculate the group velocity

vg for the eigenstates with |λ| = 1 by Eq. (A1) of Ref. [15].
(3) Select {�b

1(ζM
1 ; Z), . . . ,�b

K (ζM
1 ; Z)} that satisfy

{λ|1 < |λ| � |λ−1
min|} ∪ {λ|vg < 0,|λ| = 1}, where K is the

number of eigenstates with {λ|1 < |λ| � |λ−1
min|} ∪ {λ|vg <

0,|λ| = 1}.
(4) Prepare orthogonal complement vectors {�̃K+1

(ζM
1 ; Z), . . . ,�̃N (ζM

1 ; Z)} of the space spanned by
{�b

1(ζM
1 ; Z), . . . ,�b

K (ζM
1 ; Z)}.

(5) Set up Q̃(ζM
1 ; Z) = [�b

1(ζM
1 ; Z), . . . ,�b

K (ζM
1 ; Z),

�̃K+1(ζM
1 ; Z), . . . ,�̃N (ζM

1 ; Z)].

(6) Redo from (3) to (5) for ζM−1
mb .

(7) Calculate R̃(ζM
1 ; Z) = Q̃(ζM−1

mb ; Z)Q̃(ζM
1 ; Z)−1.

(8) Solve Eq. (13) self-consistently using R̃(ζM
1 ; Z) as an

initial estimate of Rb,p(ζM
1 ; Z).

(9) Compute 	L(ζM
1 ; Z) by Eq. (5).

	R(ζM
mb ; Z) can be obtained in a similar manner.

Note that R̃(ζM
1 ; Z) is a good initial estimate for

Rb,p(ζM
1 ; Z). Since the rank of Q̃(ζM

l ; Z) is equal to that of
Qb,p(ζM

l ; Z), the eigenstates {�K+1(ζM
l ; Z), . . . ,�N (ζM

l ; Z)}
outside the intervals |λmin| � |λ| � |λ−1

min| can be described by
a linear combination of the N -dimensional columnar vectors
consisting of Q̃(ζM

l ; Z):

Qb,p
(

ζM−1
mb ; Z

)

= Q̃
(

ζM−1
mb ; Z

)

P
(

ζM−1
mb ; Z

)

,
(14)

Qb,p
(

ζM
1 ; Z

)

= Q̃
(

ζM
1 ; Z

)

P (ζM
1 ; Z),

where P (ζM−1
mb ; Z) and P (ζM

1 ; Z) are matrices composed of the
coefficients of the linear combination. When the grid spacing in
the z direction is sufficiently small, P (ζM−1

mb ; Z) ≈ P (ζM
1 ; Z).

Thus, we have

R̃
(

ζM
1 ; Z

)

= Q̃
(

ζM−1
mb ; Z

)

Q̃
(

ζM
1 ; Z

)−1

= Q
(

ζM−1
mb ; Z

)

P
(

ζM−1
mb ; Z

)

P
(

ζM
1 ; Z

)−1

×Qb,p
(

ζM
1 ; Z

)−1

≈ Rb,p
(

ζM
1 ; Z

)

. (15)

D. Numerical test

To examine the efficiency of the present technique, we
examined the transport properties of the systems considered
in Sec. II B. Figures 2 and 3 also show the convergence of the
conductance and transmission probability of the conduction
channels obtained by the present technique as solid lines.
The convergence is much faster than that obtained without
the orthogonal complement vectors. According to the results
obtained using the orthogonal complement vectors, evanescent
waves within the interval of 10−3 � |λ| � 103 affect the
transport properties when the double precision of Fortran
95 is employed. The numerical error in the scheme without
the orthogonal complement vectors is caused by the use of
pseudoinverse matrices. In addition, by solving the continued-
fraction equations, Eq. (13), the degradation of the numerical
accuracy is suppressed when |λ−1

min| is large. Thus we can
conclude that the present technique significantly improves the
convergence with respect to the cutoff of evanescent waves for
large systems.

III. APPLICATION

Graphene [27], in which sp2 hybridized electrons (σ elec-
trons) form a honeycomb structure and the remaining π (pz)
electrons follow the massless Dirac equations, has attracted
a great deal of interest. Owing to its unique structural and
electronic properties, graphene is as an important material for
numerous theoretical investigations and a promising material
for applications. Although the research interest in graphene
is growing rapidly, there is increasing interest in whether the
other group IV elements in the periodic table have a stable
honeycomb structure. DFT has revealed that silicene, which
is a honeycomb structure of Si, is stable in the form of a
slightly buckled structure in which the neighboring atoms
are alternately displaced perpendicular to the plane and pz

electrons behave as massless Dirac fermions [28,29]. Recently,
the possible growth of silicene on a Ag(110) or Ag(100)
substrate has been reported [30–32]. Although silicene has
advantages over graphene because of its high compatibility
with current Si-based device technologies, few theoretical
studies on the transport properties of defects in silicene have
been conducted so far.

Regarding the defects in graphene, the controllable defects
mainly include SW defects [20], adatoms, vacancies, substi-
tution, and disorder. Among them, SW defects are important
topological defects in materials with a honeycomb structure,
playing a central role in their formation, transformation,
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y z

x

FIG. 4. Schematic image of computational model. Large and

small circles represent the upper and lower atoms of an alternately

buckled honeycomb structure. In the case of graphene, the lattice is

not alternately buckled, but slightly wavy.

fracture, and embrittlement. SW defects are also expected to
alter the electronic structures of graphene and affect its unique
transport properties [33,34]. Owing to the weak overlapping
between the pz orbitals between neighbor atoms in silicene,
gaining a basic knowledge of SW defects in silicene is

0.40.20.0−0.2−0.4
Energy (eV)

T
 (

E
)

0.0

0.5

1.0

1.5

2.0

Total
1st channel
2nd channel

0.40.20.0−0.2−0.4
Energy (eV)

T
 (

E
)

0.0

0.5

1.0

1.5

2.0

Total
1st channel
2nd channel

(a)

(b)

FIG. 5. Conductance and transmission probabilities of conduc-

tion channels for (a) graphene and (b) silicene.

(a)

(b)

HighLow Density

FIG. 6. Charge density distribution of scattering wave functions

of graphene. (a) First channel and (b) second channel. Each contour

represents twice or half the density of the adjacent contour lines, and

the lowest contour is 2.48 × 10−7 electron/eV Å−3.

essential to deepen fundamental understanding of the transport
properties of materials with a honeycomb structure.

First, we examine the optimized atomic structures of
graphene and silicene without any defects as well as with an
SW defect. The grid spacing is set at ∼ 0.33 and ∼ 0.40 bohr
for graphene and silicene, respectively. Integration over the
Brillouin zone is carried out using equidistant k-point sam-
pling, in which the k-point density is chosen so as to correspond
to 144-point sampling in the irreducible Brillouin zone of
pristine graphene and silicene. The exchange-correlation effect
is treated by the local density approximation [25] of DFT, and
the projector augmented wave method [35] is used to describe
the electron-ion interaction. The supercell obtaining the atomic
structure of the SW defect is indicated by the dashed line in
Fig. 4. In the case of graphene, the lattice is not alternately
buckled, but slightly wavy [36]. The cutoff for the evanescent
waves |λmin| is set to 10−3. We then examine the transport
properties by embedding the transition region with an SW
defect enclosed by the dashed line in Fig. 4 in the honeycomb

045421-6



REAL-SPACE METHOD FOR FIRST-PRINCIPLES . . . PHYSICAL REVIEW B 93, 045421 (2016)

(a) (b)

FIG. 7. Schematic image of formation of SW defect. (a) Before

deformation and (b) after deformation. The dotted line indicates a

unit cell of the bilattice.

structure. In the transport calculation performed to obtain the
scattering wave functions, the norm-conserving pseudopoten-
tials [23] of Troullier and Martins [24] are employed instead of
the projector augmented wave method. To determine the Kohn-
Sham effective potential, a supercell is used under a periodic
boundary condition, and then the scattering wave functions are
computed under the semi-infinite boundary condition obtained
non-self-consistently. It has been reported that this procedure
is just as accurate in the linear response regime but significantly
more efficient than performing computations self-consistently
on a scattering-wave basis [37]. Figure 5 shows the total
conductance and transmission probability of the conduction
channels. Two conduction channels contribute to electron
transport at kx = 0 while there are no conduction channels
at other points. A strong dip is observed at EF + 0.26 eV in
the case of silicene. By plotting the charge density distribution
of the scattering wave (not shown), it was found that the dip
can be ascribed to resonance scattering of the SW defect. The
σ ∗ state of pristine silicene is 1.2 eV above the Fermi energy
while that of graphene is 3.5 eV above the Fermi energy [38].
The SW defect of silicene scatters electrons with energy
slightly above the Fermi energy. Furthermore, the transmission
probability of the first channel is almost unity near the Fermi
energy while that of the second is considerably reduced by the
scattering at the SW defect. The charge density distribution
of the scattering wave functions in graphene are plotted in
Fig. 6. The charge density of the first channel accumulates
so as to connect carbon atoms in the x direction while that
of the second channel aligns along the z direction. The first
channel forms a bond between carbon atoms in the same unit
cell of the bilattice, while the second channel connects carbon
atoms in the neighboring unit cells. The SW defect is formed
by rotating a carbon-carbon bond in the unit cell as shown
in Fig. 7. The second channel is easily affected because the
bond configuration is greatly deformed. This feature is also
observed in silicene. Owing to the accurate evaluation of the
transmission probability obtained by the present technique,
the transport properties of the first and second channels can be
distinguished.

IV. SUMMARY

We have developed a numerical technique to obtain the
self-energy terms of electrodes for first-principles transport
calculations. The present method can significantly improve the
computational accuracy of transport properties without using
all the generalized Bloch waves of electrodes. The self-energy
terms of electrodes are computed using the generalized Bloch

waves that actually contribute to transport phenomena and
the orthogonal complement vectors of the space spanned
by the Bloch waves. By solving the continued-fraction
equations developed in the overbridging boundary-matching
method [12,13,15], we obtain the self-energy terms with
high degrees of accuracy. In addition, the present technique
is particularly efficient for large-scale transport simulations
employing the RSFD approach because the matrix size is taken
to be large so as to perform highly accurate calculations.

To present the efficiency of the present technique, the
electron transport properties of an SW defect in graphene and
silicene are calculated. Since the σ ∗ state of pristine silicene
lies at a lower energy than that of graphene, a sharp dip
ascribed to resonance scattering of the SW defect is observed
in the conductance spectrum of silicene. In addition, there are
two conduction channels near the Fermi energy in graphene
and silicene. One conduction channel is easily affected by the
SW defect while the other is insensitive at the Fermi energy.
The deformation of the bonding network, which connects the
bilattices of the honeycomb structure in the formation of SW
defects, causes this characteristic difference in the transport
properties of these two channels. Owing to the excellent
computational accuracy of the present technique, the different
behaviors of these two conduction channels in graphene and
silicene can be distinguished.

The RSFD scheme for first-principles calculations has the
advantage of potential scaling with massively parallel archi-
tectures without compromising on accuracy. From the above, it
seems reasonable to conclude that the present technique opens
the possibility of executing large-scale transport calculations
using massively parallel computers.
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APPENDIX

In this Appendix we briefly summarize the procedure used
to compute the perturbed Green’s functions and transport
properties using the self-energy terms of electrodes for
convenience. Since the proof has already been reported in
Refs. [12,15], here we introduce important formulas to explain
the newly developed technique. A typical computational model
for a transport calculation is illustrated in Fig. 8, where a
nanostructure is sandwiched between semi-infinite electrodes.
Two-dimensional periodicity in the x and y directions is
assumed and a generalized z-coordinate ζl is used instead
of zl . The exchange-correlation effect is treated by the local
density approximation [25] or generalized gradient approxi-
mation [39] of DFT [26] to neglect the interaction between the
left and right electrodes.
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FIG. 8. Sketch of a system with a transition region intervening between left and right semi-infinite crystalline electrodes. The dotted lines

correspond to the borders of the partitioning of the Hamiltonian matrix in Eq. (A1) and Fig. 9. The case for Nf = 2 is illustrated as an example.

As shown in Fig. 9 we are interested in the finite part of the
Kohn-Sham Hamiltonian [40] matrix,

Ĥ (k||) =





ĤL(k||) B̂LT 0

B̂
†
LT ĤT (k||) B̂T R

0 B̂
†
T R ĤR(k||)



, (A1)

where the borders of the partitioning of Ĥ (k||) are drawn as

dotted lines in Fig. 8; the submatrix ĤT (k||) contains the

matrix elements in the transition region, ĤL(k||) [ĤR(k||)]
corresponds to the semi-infinite left (right)-electrode region,
and B̂LT (B̂T R) is the coupling term between the transition
region and the left (right) electrode. The perturbed Green’s
function, which contains the effect of the electrodes, is defined

FIG. 9. Partitioning of the Hamiltonian matrix Ĥ of Eq. (A1).

Block-matrix elements Hl , Bl , and Bll′ are abbreviations of H (ζl,k||),

B(ζl), and B(ζl,ζl′ ), respectively. The partition lines are identical to

those in Eq. (A1). Reprinted from Ref. [15].

as

Ĝ(Z,k||) = [Z − Ĥ (k||)]
−1

=





ĜL(Z,k||) ĜLT (Z,k||) ĜLR(Z,k||)

ĜT L(Z,k||) ĜT (Z,k||) ĜT R(Z,k||)

ĜRL(Z,k||) ĜRT (Z,k||) ĜR(Z,k||)



.

(A2)

From the matrix equation





Z − ĤL(k||) −B̂LT 0

−B̂
†
LT Z − ĤT (k||) −B̂T R

0 −B̂
†
T R Z − ĤR(k||)





×





ĜLT (Z,k||)

ĜT (Z,k||)

ĜRT (Z,k||)



 =





0
I

0



, (A3)

we obtain

ĜLT (Z,k||)ĜT (Z,k||)
−1 = [Z − ĤL(k||)]

−1B̂LT ,

−B̂
†
LT ĜLT (Z,k||) + [Z − ĤT (k||)]ĜT (Z,k||)

−B̂T RĜRT (Z,k||) = I,

ĜRT (Z,k||)ĜT (Z,k||)
−1 = [Z − ĤR(k||)]

−1B̂
†
T R. (A4)

One sees that the perturbed Green’s function ĜT (Z,k||) can be
portioned to the transition region as

ĜT (Z,k||) = [Z − ĤT (k||) − 	̂L(Z,k||) − 	̂R(Z,k||)]
−1,

(A5)

with 	̂L(Z,k||) and 	̂R(Z,k||) being the self-energy terms of
the left and right electrodes, respectively. Note that Eq. (A5)
is equivalent to Dyson’s equation in the standard form [41]. In
the RSFD scheme, B̂LT (B̂T R) has only one nonzero N (=
Nx × Ny × Nf )-dimensional block-matrix element B(ζ−1)
[B(ζm+1)], which corresponds to Bb(ζM

mb ) for the left electrode

[Bb(ζM
1 ) for the right electrode], as illustrated in Fig. 9. The
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self-energy terms are found to take the very simple form of

	̂L(Z) =









	L(ζ0; Z) 0 · · · 0
0 0 · · · 0
...

...
0 0 · · · 0









,

	̂R(Z) =









0 · · · 0 0
...

...
0 · · · 0 0
0 · · · 0 	R(ζm+1; Z)









, (A6)

where 	L(ζ0; Z) = 	b
L(ζM

mb ; Z) and 	R(ζm+1; Z) =

	b
R(ζM

1 ; Z) in Sec. II.
Conductance is calculated by the following well-known

formula [42] in the NEGF formalism pioneered by Keldysh [1]:

G(E) =
2e2

h
Tr

[

ŴL(ζ0; E)Gr
T (ζ0,ζm+1; E)†ŴR(ζm+1; E)

×Gr
T (ζm+1,ζ0; E)

]

, (A7)

where

Gr
T (ζk,ζl ; E) = lim

η→0+
GT (ζk,ζl ; E + iη) (A8)

and ŴL (ŴR) is the coupling matrix, which describes the
“coupling strength” of the transition region to the left (right)
electrode at ζ0 (ζm+1), and is defined by

ŴL(ζ0; E) = i[	L(ζ0; E) − 	L(ζ0; E)†],
(A9)

ŴR(ζm+1; E) = i[	R(ζm+1; E) − 	R(ζm+1; E)†].

Scattering wave functions in the electrodes are expressed
as


j (ζl ; E)

=







�in
j (ζl ; E) +

∑N
n=1 rij�

ref
n (ζl ; E) · · · l � 0,

∑N
n=1 tij�

tra
n (ζl ; E) · · · l � m + 1,

(A10)

with tij and rij being transmission and reflection coefficients,
respectively. The transmission and reflection coefficients are
computed using

T = iQtra(ζm+1; E)−1Gr
T (ζm+1,ζ0; E)ŴL(ζ0; E)Qin(ζ0; E),

R = iQref(ζ0; E)−1Gr
T (ζ0,ζ0; E)ŴL(ζ0; E)

−Qref(ζ0; E)−1Qin(ζ0; E), (A11)

where T and R are the transmission-coefficient and reflection-
coefficient matrices, which are given as

T =











t11 t12 · · · t1N

t21 t22 · · · t2N

· · ·

tN1 tN2 · · · tNN











(A12)

and

R =











r11 r12 · · · r1N

r21 r22 · · · r2N

· · ·

rN1 rN2 · · · rNN











, (A13)

respectively. Here �in
n (ζl ; E) [Qin(ζl ; E)], �ref

n (ζl ; E)
[Qref(ζl ; E)], and �tra

n (ζl ; E) [Qtra(ζl ; E)] are �b,in
n (ζM

l ; E)
[Qb,in(ζM

l ; E)] for the left electrode, �b,ref
n (ζM

l ; E)
[Qb,ref(ζM

l ; E)] for the left electrode, and �b,tra
n (ζM

l−m; E)

[Qb,tra(ζM
l−m; E)] for the right electrode, respectively. Note

that Qb,tra and Qb,ref include the orthogonal complement
vectors in the technique introduced in Sec. II. Conductance is
also calculated as

G(E) =
2e2

h

∑

i,j

|tij |
2 v′

i

vj

, (A14)

where v′
i and vj are the group velocities of incident

and transmitted propagating waves, which are defined in
Ref. [15].
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[36] J. Ma, D. Alfé, A. Michaelides, and E. Wang, Phys. Rev. B 80,

033407 (2009).

[37] L. Kong, J. R. Chelikowsky, J. B. Neaton, and S. G. Louie, Phys.

Rev. B 76, 235422 (2007).

[38] E. Kogan, Graphene 2, 74 (2013).

[39] J. P. Perdew, Phys. Rev. Lett. 55, 1665 (1985); J. P. Perdew,

J. A. Chevary, S. H. Vosko, K. A. Jackson, M. R. Pederson,

D. J. Singh, and C. Fiolhais, Phys. Rev. B 46, 6671 (1992); J. P.

Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865

(1996); 78, 1396 (1997).

[40] W. Kohn and L. J. Sham, Phys. Rev. 140, A1133

(1965).

[41] A. R. Williams, P. J. Feibelman, and N. D. Lang, Phys. Rev. B

26, 5433 (1982).

[42] D. S. Fisher and P. A. Lee, Phys. Rev. B 23, 6851(R) (1981).

045421-10


