000825808 001__ 825808
000825808 005__ 20240711101502.0
000825808 0247_ $$2doi$$a10.1016/j.jpowsour.2017.07.033
000825808 0247_ $$2ISSN$$a0378-7753
000825808 0247_ $$2ISSN$$a1873-2755
000825808 0247_ $$2WOS$$aWOS:000412379200008
000825808 037__ $$aFZJ-2017-00110
000825808 082__ $$a620
000825808 1001_ $$0P:(DE-Juel1)151296$$aPaciok, Paul$$b0
000825808 245__ $$aOn the mobility of carbon-supported platinum nanoparticles towards unveiling cathode degradation in water electrolysis
000825808 260__ $$aNew York, NY [u.a.]$$bElsevier$$c2017
000825808 3367_ $$2DRIVER$$aarticle
000825808 3367_ $$2DataCite$$aOutput Types/Journal article
000825808 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1515078905_1050
000825808 3367_ $$2BibTeX$$aARTICLE
000825808 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825808 3367_ $$00$$2EndNote$$aJournal Article
000825808 520__ $$aThis study investigates the influence of the hydrogen evolution reaction (HER) overpotential on the mobility of carbon-supported platinum particles. The migration of the platinum over the carbon support was analyzed by means of identical location transmission electron microscopy (IL-TEM). While at potentials of 0.1 and 0 V vs. reversible hydrogen electrode (RHE), no changes to the Pt/C material were observed. With a decrease of the overpotential to −0.1 V vs. RHE, an increase in the quantity of migrating platinum particles took place. At −0.2 V vs. RHE, a further rise in the particle migration was observed. The effect of the overpotential on the migration was explained by a higher hydrogen generation rate, the formation of a hydrogen monolayer on the platinum and the resulting changes of the platinum support distance. The mechanisms revealed in this study could describe a relevant source of degradation of PEM water electrolyzers.
000825808 536__ $$0G:(DE-HGF)POF3-134$$a134 - Electrolysis and Hydrogen (POF3-134)$$cPOF3-134$$fPOF III$$x0
000825808 588__ $$aDataset connected to CrossRef
000825808 7001_ $$0P:(DE-Juel1)156320$$aSchalenbach, Maximilian$$b1
000825808 7001_ $$0P:(DE-Juel1)145276$$aCarmo, Marcelo$$b2$$eCorresponding author
000825808 7001_ $$0P:(DE-Juel1)128533$$aLüke, Wiebke$$b3
000825808 7001_ $$0P:(DE-Juel1)129928$$aStolten, Detlef$$b4
000825808 773__ $$0PERI:(DE-600)1491915-1$$a10.1016/j.jpowsour.2017.07.033$$gVol. 365, p. 53 - 60$$p53 - 60$$tJournal of power sources$$v365$$x0378-7753$$y2017
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.pdf$$yRestricted
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.gif?subformat=icon$$xicon$$yRestricted
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825808 8564_ $$uhttps://juser.fz-juelich.de/record/825808/files/1-s2.0-S0378775317309151-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825808 909CO $$ooai:juser.fz-juelich.de:825808$$pVDB
000825808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151296$$aForschungszentrum Jülich$$b0$$kFZJ
000825808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145276$$aForschungszentrum Jülich$$b2$$kFZJ
000825808 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129928$$aForschungszentrum Jülich$$b4$$kFZJ
000825808 9131_ $$0G:(DE-HGF)POF3-134$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrolysis and Hydrogen$$x0
000825808 9141_ $$y2017
000825808 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ POWER SOURCES : 2015
000825808 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825808 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825808 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825808 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825808 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825808 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825808 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825808 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825808 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825808 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825808 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000825808 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ POWER SOURCES : 2015
000825808 920__ $$lyes
000825808 9201_ $$0I:(DE-Juel1)IEK-3-20101013$$kIEK-3$$lElektrochemische Verfahrenstechnik$$x0
000825808 980__ $$ajournal
000825808 980__ $$aVDB
000825808 980__ $$aI:(DE-Juel1)IEK-3-20101013
000825808 980__ $$aUNRESTRICTED
000825808 981__ $$aI:(DE-Juel1)ICE-2-20101013