001     825816
005     20210129225434.0
024 7 _ |a 10.2967/jnumed.116.180075
|2 doi
024 7 _ |a 0097-9058
|2 ISSN
024 7 _ |a 0161-5505
|2 ISSN
024 7 _ |a 1535-5667
|2 ISSN
024 7 _ |a 0022-3123
|2 ISSN
024 7 _ |a WOS:000398249600019
|2 WOS
024 7 _ |a altmetric:20474187
|2 altmetric
024 7 _ |a pmid:27754904
|2 pmid
037 _ _ |a FZJ-2017-00118
082 _ _ |a 610
100 1 _ |a Unterrainer, M.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a 18F-FET PET uptake characteristics in patients with newly diagnosed and untreated brain metastasis
260 _ _ |a Reston, Va.
|c 2017
|b SNM84042
264 _ 1 |3 online
|2 Crossref
|b Society of Nuclear Medicine
|c 2016-10-06
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2017-04-01
264 _ 1 |3 print
|2 Crossref
|b Society of Nuclear Medicine
|c 2017-04-01
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1491570626_657
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a In patients with brain metastasis, PET using labeled amino acids has gained clinical importance, mainly regarding the differentiation of viable tumor tissue from treatment-related effects. However, there is still limited knowledge concerning the uptake characteristics in patients with newly diagnosed and untreated brain metastases. Hence, we evaluated the uptake characteristics in these patients using dynamic O-(2-18F-fluoroethyl)-l-tyrosine (18F-FET) PET. Methods: Patients with newly diagnosed brain metastases without prior local therapy and 18F-FET PET scanning were retrospectively identified in 2 centers. Static and dynamic PET parameters (maximal/mean tumor-to-brain-ratio [TBRmax/TBRmean], biologic tumor volume [BTV], and time–activity curves with minimal time to peak [TTPmin]) were evaluated and correlated with MRI parameters (maximal lesion diameter, volume of contrast enhancement) and originating primary tumor. Results: Forty-five brain metastases in 30 patients were included. Forty of 45 metastases (89%) had a TBRmax ≥ 1.6 and were classified as 18F-FET–positive (median TBRmax, 2.53 [range, 1.64–9.47]; TBRmean, 1.86 [range, 1.63–5.48]; and BTV, 3.59 mL [range, 0.04–23.98 mL], respectively). In 39 of 45 brain metastases eligible for dynamic analysis, a wide range of TTPmin was observed (median, 22.5 min; range, 4.5–47.5 min). All 18F-FET–negative metastases had a diameter of ≤ 1.0 cm, whereas metastases with a > 1.0 cm diameter all showed pathologic 18F-FET uptake, which did not correlate with lesion size. The highest variability of uptake intensity was observed within the group of melanoma metastases. Conclusion: Untreated metastases predominantly show increased 18F-FET uptake, and only a third of metastases < 1.0 cm were 18F-FET–negative, most likely because of scanner resolution and partial-volume effects. In metastases > 1.0 cm, 18F-FET uptake intensity was highly variable and independent of tumor size (even intraindividually). 18F-FET PET might provide additional information beyond the tumor extent by reflecting molecular features of a metastasis and might be a useful tool for future clinical applications, for example, response assessment.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Galldiks, N.
|0 P:(DE-Juel1)143792
|b 1
700 1 _ |a Suchorska, B.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Kowalew, L.-C.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wenter, V.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Schmid-Tannwald, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Niyazi, M.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bartenstein, P.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Langen, K.-J.
|0 P:(DE-Juel1)131777
|b 8
700 1 _ |a Albert, N. L.
|0 P:(DE-HGF)0
|b 9
|e Corresponding author
773 1 8 |a 10.2967/jnumed.116.180075
|b : Society of Nuclear Medicine, 2016-10-06
|n 4
|p 584-589
|3 journal-article
|2 Crossref
|t Journal of Nuclear Medicine
|v 58
|y 2016
|x 0161-5505
773 _ _ |a 10.2967/jnumed.116.180075
|g p. jnumed.116.180075
|0 PERI:(DE-600)2040222-3
|n 4
|p 584-589
|t Journal of nuclear medicine
|v 58
|y 2016
|x 0161-5505
909 C O |o oai:juser.fz-juelich.de:825816
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MED : 2013
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J NUCL MED : 2013
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21