000825817 001__ 825817
000825817 005__ 20210129225434.0
000825817 0247_ $$2doi$$a10.1007/s00259-016-3508-0
000825817 0247_ $$2ISSN$$a0340-6997
000825817 0247_ $$2ISSN$$a1432-105X
000825817 0247_ $$2ISSN$$a1619-7070
000825817 0247_ $$2ISSN$$a1619-7089
000825817 0247_ $$2WOS$$aWOS:000394985100008
000825817 0247_ $$2altmetric$$aaltmetric:11946348
000825817 0247_ $$2pmid$$apmid:27613541
000825817 037__ $$aFZJ-2017-00119
000825817 082__ $$a610
000825817 1001_ $$0P:(DE-Juel1)156479$$aStegmayr, Carina$$b0$$eCorresponding author
000825817 245__ $$aInfluence of blood-brain barrier permeability on O-(2-$^{18}$F-fluoroethyl)-L-tyrosine uptake in rat gliomas
000825817 260__ $$aHeidelberg [u.a.]$$bSpringer-Verl.$$c2017
000825817 3367_ $$2DRIVER$$aarticle
000825817 3367_ $$2DataCite$$aOutput Types/Journal article
000825817 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1501223918_6350
000825817 3367_ $$2BibTeX$$aARTICLE
000825817 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825817 3367_ $$00$$2EndNote$$aJournal Article
000825817 520__ $$aPurposeO-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on 18F-FET uptake in two rat glioma models and one human xenograft model.MethodsF98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent 18F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of 18F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs.ResultsIn Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of 18F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010).ConclusionDespite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of 18F-FET uptake were noted in this experimental study. Thus, 18F-FET uptake in gliomas appears to be widely independent of the permeability of the BBB.
000825817 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000825817 588__ $$aDataset connected to CrossRef
000825817 7001_ $$0P:(DE-Juel1)129279$$aBandelow, Ulrike$$b1
000825817 7001_ $$0P:(DE-Juel1)165631$$aOliveira, Dennis$$b2
000825817 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b3
000825817 7001_ $$0P:(DE-Juel1)144347$$aWilluweit, Antje$$b4
000825817 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b5
000825817 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b6
000825817 7001_ $$0P:(DE-HGF)0$$aLübke, Joachim H. R.$$b7
000825817 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b8
000825817 7001_ $$0P:(DE-Juel1)131818$$aErmert, Johannes$$b9
000825817 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b10$$eCorresponding author
000825817 773__ $$0PERI:(DE-600)2098375-X$$a10.1007/s00259-016-3508-0$$n3$$p408–416$$tEuropean journal of nuclear medicine and molecular imaging$$v44$$x1619-7089$$y2017
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.pdf$$yRestricted
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.gif?subformat=icon$$xicon$$yRestricted
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825817 8564_ $$uhttps://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825817 909CO $$ooai:juser.fz-juelich.de:825817$$pVDB
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156479$$aForschungszentrum Jülich$$b0$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129279$$aForschungszentrum Jülich$$b1$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165631$$aForschungszentrum Jülich$$b2$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b3$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144347$$aForschungszentrum Jülich$$b4$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b5$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b6$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b8$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131818$$aForschungszentrum Jülich$$b9$$kFZJ
000825817 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b10$$kFZJ
000825817 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000825817 9141_ $$y2017
000825817 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825817 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825817 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825817 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825817 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825817 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR J NUCL MED MOL I : 2015
000825817 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825817 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825817 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825817 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825817 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000825817 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000825817 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bEUR J NUCL MED MOL I : 2015
000825817 9201_ $$0I:(DE-Juel1)INM-2-20090406$$kINM-2$$lMolekulare Organisation des Gehirns$$x0
000825817 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x1
000825817 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x2
000825817 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x3
000825817 9201_ $$0I:(DE-Juel1)INM-5-20090406$$kINM-5$$lNuklearchemie$$x4
000825817 980__ $$ajournal
000825817 980__ $$aVDB
000825817 980__ $$aI:(DE-Juel1)INM-2-20090406
000825817 980__ $$aI:(DE-Juel1)INM-3-20090406
000825817 980__ $$aI:(DE-Juel1)INM-4-20090406
000825817 980__ $$aI:(DE-82)080010_20140620
000825817 980__ $$aI:(DE-Juel1)INM-5-20090406
000825817 980__ $$aUNRESTRICTED