001     825817
005     20210129225434.0
024 7 _ |a 10.1007/s00259-016-3508-0
|2 doi
024 7 _ |a 0340-6997
|2 ISSN
024 7 _ |a 1432-105X
|2 ISSN
024 7 _ |a 1619-7070
|2 ISSN
024 7 _ |a 1619-7089
|2 ISSN
024 7 _ |a WOS:000394985100008
|2 WOS
024 7 _ |a altmetric:11946348
|2 altmetric
024 7 _ |a pmid:27613541
|2 pmid
037 _ _ |a FZJ-2017-00119
082 _ _ |a 610
100 1 _ |a Stegmayr, Carina
|0 P:(DE-Juel1)156479
|b 0
|e Corresponding author
245 _ _ |a Influence of blood-brain barrier permeability on O-(2-$^{18}$F-fluoroethyl)-L-tyrosine uptake in rat gliomas
260 _ _ |a Heidelberg [u.a.]
|c 2017
|b Springer-Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1501223918_6350
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PurposeO-(2-18F-fluoroethyl)-L-tyrosine (18F-FET) is an established tracer for the diagnosis of brain tumors with PET. This study investigates the influence of blood-brain barrier (BBB) permeability on 18F-FET uptake in two rat glioma models and one human xenograft model.MethodsF98 glioma, 9L gliosarcoma or human U87 glioblastoma cells were implanted into the striatum of 56 Fischer or RNU rats. Thereafter, animals were divided into a control group and a group receiving injections of the glucocorticoid dexamethasone (Dex). After 12-13 days of tumor growth animals received injection of Evans blue dye (EBD) to visualize BBB disturbance and underwent 18F-FET PET followed by autoradiography. Time activity curves, standardized uptake values (SUV) and Tumor-to-brain ratios (TBR) of 18F-FET uptake [18-61 min post injection (p.i.)] were evaluated using a volume-of-Interest (VOI) analysis. BBB disturbance was quantitatively evaluated by EBD fluorescence. The membrane gaps of blood vessel endothelial tight junctions were measured using electron microscopy to visualize ultrastructural BBB alterations in one untreated and one Dex treated F98 glioma. Data were analyzed by two-way ANOVAs.ResultsIn Dex treated animals EBD extravasation was significantly reduced in 9L (P < 0.001) and U87 (P = 0.008) models and showed a trend in F98 models (P = 0.053). In contrast, no significant differences of 18F-FET uptake were observed between Dex treated animals and control group except a decrease of the TBR in the 9L tumor model in PET (P < 0.01). Ultrastructural evaluation of tumor blood vessel endothelia revealed significant reduction of the cleft diameter between endothelial cells after Dex treatment in F98 model (P = 0.010).ConclusionDespite a considerable reduction of BBB permeability in rat gliomas after Dex treatment, no relevant changes of 18F-FET uptake were noted in this experimental study. Thus, 18F-FET uptake in gliomas appears to be widely independent of the permeability of the BBB.
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Bandelow, Ulrike
|0 P:(DE-Juel1)129279
|b 1
700 1 _ |a Oliveira, Dennis
|0 P:(DE-Juel1)165631
|b 2
700 1 _ |a Lohmann, Philipp
|0 P:(DE-Juel1)145110
|b 3
700 1 _ |a Willuweit, Antje
|0 P:(DE-Juel1)144347
|b 4
700 1 _ |a Filss, Christian
|0 P:(DE-Juel1)141877
|b 5
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 6
700 1 _ |a Lübke, Joachim H. R.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Shah, N. J.
|0 P:(DE-Juel1)131794
|b 8
700 1 _ |a Ermert, Johannes
|0 P:(DE-Juel1)131818
|b 9
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 10
|e Corresponding author
773 _ _ |a 10.1007/s00259-016-3508-0
|0 PERI:(DE-600)2098375-X
|n 3
|p 408–416
|t European journal of nuclear medicine and molecular imaging
|v 44
|y 2017
|x 1619-7089
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825817/files/art_10.1007_s00259-016-3508-0.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825817
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156479
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129279
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)165631
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)145110
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144347
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131794
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)131818
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b EUR J NUCL MED MOL I : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b EUR J NUCL MED MOL I : 2015
920 1 _ |0 I:(DE-Juel1)INM-2-20090406
|k INM-2
|l Molekulare Organisation des Gehirns
|x 0
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 1
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 2
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 3
920 1 _ |0 I:(DE-Juel1)INM-5-20090406
|k INM-5
|l Nuklearchemie
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-2-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21