000825818 001__ 825818 000825818 005__ 20220930130113.0 000825818 0247_ $$2doi$$a10.1093/neuonc/now149 000825818 0247_ $$2ISSN$$a1522-8517 000825818 0247_ $$2ISSN$$a1523-5866 000825818 0247_ $$2WOS$$aWOS:000397280500015 000825818 0247_ $$2altmetric$$aaltmetric:10108548 000825818 0247_ $$2pmid$$apmid:27471107 000825818 037__ $$aFZJ-2017-00120 000825818 041__ $$aEnglish 000825818 082__ $$a610 000825818 1001_ $$0P:(DE-HGF)0$$aCeccon, Garry$$b0 000825818 245__ $$aDynamic O -(2-$^{18}$ F-fluoroethyl)-L-tyrosine positron emission tomography differentiates brain metastasis recurrence from radiation injury after radiotherapy 000825818 260__ $$aOxford$$bOxford Univ. Press$$c2017 000825818 3367_ $$2DRIVER$$aarticle 000825818 3367_ $$2DataCite$$aOutput Types/Journal article 000825818 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1492774582_23541 000825818 3367_ $$2BibTeX$$aARTICLE 000825818 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000825818 3367_ $$00$$2EndNote$$aJournal Article 000825818 520__ $$aBackgroundThe aim of this study was to investigate the potential of dynamic O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) PET for differentiating local recurrent brain metastasis from radiation injury after radiotherapy since contrast-enhanced MRI often remains inconclusive.MethodsSixty-two patients (mean age, 55 ± 11 y) with single or multiple contrast-enhancing brain lesions (n = 76) on MRI after radiotherapy of brain metastases (predominantly stereotactic radiosurgery) were investigated with dynamic 18F-FET PET. Maximum and mean tumor-to-brain ratios (TBRmax, TBRmean) of 18F-FET uptake were determined (20–40 min postinjection) as well as tracer uptake kinetics (ie, time-to-peak and slope of time-activity curves). Diagnoses were confirmed histologically (34%; 26 lesions in 25 patients) or by clinical follow-up (66%; 50 lesions in 37 patients). Diagnostic accuracies of PET parameters for the correct identification of recurrent brain metastasis were evaluated by receiver-operating-characteristic analyses or the chi-square test.ResultsTBRs were significantly higher in recurrent metastases (n = 36) than in radiation injuries (n = 40) (TBRmax 3.3 ± 1.0 vs 2.2 ± 0.4, P < .001; TBRmean 2.2 ± 0.4 vs 1.7 ± 0.3, P < .001). The highest accuracy (88%) for diagnosing local recurrent metastasis could be obtained with TBRs in combination with the slope of time-activity curves (P < .001).ConclusionsThe results of this study confirm previous preliminary observations that the combined evaluation of the TBRs of 18F-FET uptake and the slope of time-activity curves can differentiate local brain metastasis recurrence from radiation-induced changes with high accuracy. 18F-FET PET may thus contribute significantly to the management of patients with brain metastases. 000825818 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000825818 588__ $$aDataset connected to CrossRef 000825818 7001_ $$0P:(DE-Juel1)145110$$aLohmann, Philipp$$b1 000825818 7001_ $$0P:(DE-Juel1)131627$$aStoffels, Gabriele$$b2 000825818 7001_ $$0P:(DE-Juel1)143958$$aJudov, Natalie$$b3 000825818 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b4 000825818 7001_ $$0P:(DE-HGF)0$$aRapp, Marion$$b5 000825818 7001_ $$0P:(DE-HGF)0$$aBauer, Elena$$b6 000825818 7001_ $$0P:(DE-HGF)0$$aHamisch, Christina$$b7 000825818 7001_ $$0P:(DE-HGF)0$$aRuge, Maximilian I.$$b8 000825818 7001_ $$0P:(DE-HGF)0$$aKocher, Martin$$b9 000825818 7001_ $$0P:(DE-HGF)0$$aKuchelmeister, Klaus$$b10 000825818 7001_ $$0P:(DE-HGF)0$$aSellhaus, Bernd$$b11 000825818 7001_ $$0P:(DE-Juel1)165921$$aSabel, Michael$$b12 000825818 7001_ $$0P:(DE-Juel1)131720$$aFink, Gereon R.$$b13 000825818 7001_ $$0P:(DE-Juel1)131794$$aShah, Nadim J.$$b14 000825818 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b15 000825818 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b16$$eCorresponding author 000825818 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/now149$$gp. now149 -$$n2$$p281-288$$tNeuro-Oncology$$v19$$x1523-5866$$y2017 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.pdf$$yRestricted 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.gif?subformat=icon$$xicon$$yRestricted 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.jpg?subformat=icon-180$$xicon-180$$yRestricted 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.jpg?subformat=icon-640$$xicon-640$$yRestricted 000825818 8564_ $$uhttps://juser.fz-juelich.de/record/825818/files/now149.pdf?subformat=pdfa$$xpdfa$$yRestricted 000825818 8767_ $$92016-08-11$$d2016-08-12$$eColour charges$$jZahlung erfolgt$$zMittelübertragung durch INM-3, 000825818 909CO $$ooai:juser.fz-juelich.de:825818$$pOpenAPC$$pVDB$$popenCost 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145110$$aForschungszentrum Jülich$$b1$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131627$$aForschungszentrum Jülich$$b2$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143958$$aForschungszentrum Jülich$$b3$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b4$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131720$$aForschungszentrum Jülich$$b13$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b14$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b15$$kFZJ 000825818 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b16$$kFZJ 000825818 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000825818 9141_ $$y2017 000825818 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000825818 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000825818 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2015 000825818 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000825818 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000825818 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000825818 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000825818 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000825818 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000825818 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000825818 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEURO-ONCOLOGY : 2015 000825818 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000825818 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000825818 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000825818 980__ $$ajournal 000825818 980__ $$aVDB 000825818 980__ $$aI:(DE-Juel1)INM-3-20090406 000825818 980__ $$aI:(DE-Juel1)INM-4-20090406 000825818 980__ $$aI:(DE-82)080010_20140620 000825818 980__ $$aUNRESTRICTED 000825818 980__ $$aAPC