000825820 001__ 825820 000825820 005__ 20210129225438.0 000825820 0247_ $$2doi$$a10.1093/neuonc/now283 000825820 0247_ $$2ISSN$$a1522-8517 000825820 0247_ $$2ISSN$$a1523-5866 000825820 0247_ $$2WOS$$aWOS:000397280500019 000825820 037__ $$aFZJ-2017-00122 000825820 082__ $$a610 000825820 1001_ $$0P:(DE-HGF)0$$aCicone, Francesco$$b0$$eCorresponding author 000825820 245__ $$aComment on Hatzoglou et al: Dynamic contrast-enhanced MRI perfusion versus $^{18}$ FDG PET/CT in differentiating brain tumor progression from radiation injury 000825820 260__ $$aOxford$$bOxford Univ. Press$$c2017 000825820 3367_ $$2DRIVER$$aarticle 000825820 3367_ $$2DataCite$$aOutput Types/Journal article 000825820 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1487771429_14325 000825820 3367_ $$2BibTeX$$aARTICLE 000825820 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000825820 3367_ $$00$$2EndNote$$aJournal Article 000825820 520__ $$aWe read with great interest the paper by Hatzoglou et al, recently published in Neuro-Oncology,1 concerning the discrimination between progressive disease and radiotherapy-induced changes in brain tumors, which is a clinical challenge of paramount importance. To address this diagnostic problem, the authors compared dynamic contrast enhanced (DCE) MRI and fluorine-18-fluorodeoxyglucose (FDG) PET/CT in a total of 53 patients with primary brain tumors (n = 29) or brain metastases (n = 26). They found that the DCE MRI–derived plasma volume ratio (Vpratio) and transfer coefficient ratio (Ktransratio), as well as the FDG PET–derived standardized uptake value ratio (SUVratio) were useful in distinguishing between progression and radiation injury, both in the overall cohort and in the 2 main subgroups (primary and secondary brain tumors). They concluded, however, that DCE MRI–derived Vpratio was the “most robust” predictor of progression after showing a trend toward higher performances for Vpratio with respect to SUVratio (sensitivity and specificity = 92% and 77% vs 68% and 82%; AUC = 0.87 vs 0.75, P = .061, for Vpratio and SUVratio, respectively). 000825820 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0 000825820 588__ $$aDataset connected to CrossRef 000825820 7001_ $$0P:(DE-Juel1)143792$$aGalldiks, Norbert$$b1 000825820 7001_ $$0P:(DE-HGF)0$$aMinniti, Giuseppe$$b2 000825820 7001_ $$0P:(DE-Juel1)141877$$aFilss, Christian$$b3 000825820 7001_ $$0P:(DE-HGF)0$$aScopinaro, Francesco$$b4 000825820 7001_ $$0P:(DE-HGF)0$$aPrior, John O.$$b5 000825820 7001_ $$0P:(DE-HGF)0$$aAlbert, Nathalie L.$$b6 000825820 7001_ $$0P:(DE-Juel1)131777$$aLangen, Karl-Josef$$b7 000825820 773__ $$0PERI:(DE-600)2094060-9$$a10.1093/neuonc/now283$$gp. now283 -$$n2$$p300-301$$tNeuro-Oncology$$v19$$x1523-5866$$y2017 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.pdf$$yRestricted 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.gif?subformat=icon$$xicon$$yRestricted 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-180$$xicon-180$$yRestricted 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-640$$xicon-640$$yRestricted 000825820 8564_ $$uhttps://juser.fz-juelich.de/record/825820/files/now283.pdf?subformat=pdfa$$xpdfa$$yRestricted 000825820 909CO $$ooai:juser.fz-juelich.de:825820$$pVDB 000825820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143792$$aForschungszentrum Jülich$$b1$$kFZJ 000825820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)141877$$aForschungszentrum Jülich$$b3$$kFZJ 000825820 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131777$$aForschungszentrum Jülich$$b7$$kFZJ 000825820 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0 000825820 9141_ $$y2017 000825820 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000825820 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000825820 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEURO-ONCOLOGY : 2015 000825820 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000825820 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000825820 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000825820 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000825820 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000825820 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000825820 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine 000825820 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bNEURO-ONCOLOGY : 2015 000825820 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0 000825820 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x1 000825820 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2 000825820 980__ $$ajournal 000825820 980__ $$aVDB 000825820 980__ $$aI:(DE-Juel1)INM-3-20090406 000825820 980__ $$aI:(DE-Juel1)INM-4-20090406 000825820 980__ $$aI:(DE-82)080010_20140620 000825820 980__ $$aUNRESTRICTED