001     825820
005     20210129225438.0
024 7 _ |a 10.1093/neuonc/now283
|2 doi
024 7 _ |a 1522-8517
|2 ISSN
024 7 _ |a 1523-5866
|2 ISSN
024 7 _ |a WOS:000397280500019
|2 WOS
037 _ _ |a FZJ-2017-00122
082 _ _ |a 610
100 1 _ |a Cicone, Francesco
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Comment on Hatzoglou et al: Dynamic contrast-enhanced MRI perfusion versus $^{18}$ FDG PET/CT in differentiating brain tumor progression from radiation injury
260 _ _ |a Oxford
|c 2017
|b Oxford Univ. Press
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1487771429_14325
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We read with great interest the paper by Hatzoglou et al, recently published in Neuro-Oncology,1 concerning the discrimination between progressive disease and radiotherapy-induced changes in brain tumors, which is a clinical challenge of paramount importance. To address this diagnostic problem, the authors compared dynamic contrast enhanced (DCE) MRI and fluorine-18-fluorodeoxyglucose (FDG) PET/CT in a total of 53 patients with primary brain tumors (n = 29) or brain metastases (n = 26). They found that the DCE MRI–derived plasma volume ratio (Vpratio) and transfer coefficient ratio (Ktransratio), as well as the FDG PET–derived standardized uptake value ratio (SUVratio) were useful in distinguishing between progression and radiation injury, both in the overall cohort and in the 2 main subgroups (primary and secondary brain tumors). They concluded, however, that DCE MRI–derived Vpratio was the “most robust” predictor of progression after showing a trend toward higher performances for Vpratio with respect to SUVratio (sensitivity and specificity = 92% and 77% vs 68% and 82%; AUC = 0.87 vs 0.75, P = .061, for Vpratio and SUVratio, respectively).
536 _ _ |a 573 - Neuroimaging (POF3-573)
|0 G:(DE-HGF)POF3-573
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Galldiks, Norbert
|0 P:(DE-Juel1)143792
|b 1
700 1 _ |a Minniti, Giuseppe
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Filss, Christian
|0 P:(DE-Juel1)141877
|b 3
700 1 _ |a Scopinaro, Francesco
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Prior, John O.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Albert, Nathalie L.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Langen, Karl-Josef
|0 P:(DE-Juel1)131777
|b 7
773 _ _ |a 10.1093/neuonc/now283
|g p. now283 -
|0 PERI:(DE-600)2094060-9
|n 2
|p 300-301
|t Neuro-Oncology
|v 19
|y 2017
|x 1523-5866
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825820/files/now283.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825820
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)143792
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)141877
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)131777
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-573
|2 G:(DE-HGF)POF3-500
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Allianz-Lizenz / DFG
|0 StatID:(DE-HGF)0400
|2 StatID
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NEURO-ONCOLOGY : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b NEURO-ONCOLOGY : 2015
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 0
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21