000825821 001__ 825821 000825821 005__ 20210129225441.0 000825821 0247_ $$2doi$$a10.1007/s11104-016-3144-2 000825821 0247_ $$2ISSN$$a0032-079X 000825821 0247_ $$2ISSN$$a1573-5036 000825821 0247_ $$2WOS$$aWOS:000403495500008 000825821 0247_ $$2altmetric$$aaltmetric:14826947 000825821 037__ $$aFZJ-2017-00123 000825821 082__ $$a570 000825821 1001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b0$$eCorresponding author 000825821 245__ $$aA new model for root growth in soil with macropores 000825821 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016 000825821 3367_ $$2DRIVER$$aarticle 000825821 3367_ $$2DataCite$$aOutput Types/Journal article 000825821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499080306_2777 000825821 3367_ $$2BibTeX$$aARTICLE 000825821 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000825821 3367_ $$00$$2EndNote$$aJournal Article 000825821 520__ $$aBackground and aimsThe use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil.MethodsIn our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement.ResultsThe model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated.ConclusionsQualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one. 000825821 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0 000825821 588__ $$aDataset connected to CrossRef 000825821 7001_ $$0P:(DE-Juel1)144686$$aHuber, Katrin$$b1$$ufzj 000825821 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b2$$ufzj 000825821 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3$$ufzj 000825821 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b4$$ufzj 000825821 7001_ $$0P:(DE-HGF)0$$aGlyn Bengough, A.$$b5 000825821 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj 000825821 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-016-3144-2$$n1-2$$p99–116$$tPlant and soil$$v415$$x1573-5036$$y2016 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.pdf$$yRestricted 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.gif?subformat=icon$$xicon$$yRestricted 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-180$$xicon-180$$yRestricted 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-640$$xicon-640$$yRestricted 000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.pdf?subformat=pdfa$$xpdfa$$yRestricted 000825821 909CO $$ooai:juser.fz-juelich.de:825821$$pVDB:Earth_Environment$$pVDB 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b0$$kFZJ 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144686$$aForschungszentrum Jülich$$b1$$kFZJ 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b2$$kFZJ 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b4$$kFZJ 000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ 000825821 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0 000825821 9141_ $$y2017 000825821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000825821 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium 000825821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2015 000825821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000825821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000825821 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000825821 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search 000825821 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC 000825821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000825821 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000825821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000825821 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000825821 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences 000825821 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000825821 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000825821 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0 000825821 980__ $$ajournal 000825821 980__ $$aVDB 000825821 980__ $$aI:(DE-Juel1)IBG-3-20101118 000825821 980__ $$aUNRESTRICTED