000825821 001__ 825821
000825821 005__ 20210129225441.0
000825821 0247_ $$2doi$$a10.1007/s11104-016-3144-2
000825821 0247_ $$2ISSN$$a0032-079X
000825821 0247_ $$2ISSN$$a1573-5036
000825821 0247_ $$2WOS$$aWOS:000403495500008
000825821 0247_ $$2altmetric$$aaltmetric:14826947
000825821 037__ $$aFZJ-2017-00123
000825821 082__ $$a570
000825821 1001_ $$0P:(DE-Juel1)165987$$aLandl, Magdalena$$b0$$eCorresponding author
000825821 245__ $$aA new model for root growth in soil with macropores
000825821 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2016
000825821 3367_ $$2DRIVER$$aarticle
000825821 3367_ $$2DataCite$$aOutput Types/Journal article
000825821 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1499080306_2777
000825821 3367_ $$2BibTeX$$aARTICLE
000825821 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825821 3367_ $$00$$2EndNote$$aJournal Article
000825821 520__ $$aBackground and aimsThe use of standard dynamic root architecture models to simulate root growth in soil containing macropores failed to reproduce experimentally observed root growth patterns. We thus developed a new, more mechanistic model approach for the simulation of root growth in structured soil.MethodsIn our alternative modelling approach, we distinguish between, firstly, the driving force for root growth, which is determined by the orientation of the previous root segment and the influence of gravitropism and, secondly, soil mechanical resistance to root growth. The latter is expressed by its inverse, soil mechanical conductance, and treated similarly to hydraulic conductivity in Darcy’s law. At the presence of macropores, soil mechanical conductance is anisotropic, which leads to a difference between the direction of the driving force and the direction of the root tip movement.ResultsThe model was tested using data from the literature, at pot scale, at macropore scale, and in a series of simulations where sensitivity to gravity and macropore orientation was evaluated.ConclusionsQualitative and quantitative comparisons between simulated and experimentally observed root systems showed good agreement, suggesting that the drawn analogy between soil water flow and root growth is a useful one.
000825821 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000825821 588__ $$aDataset connected to CrossRef
000825821 7001_ $$0P:(DE-Juel1)144686$$aHuber, Katrin$$b1$$ufzj
000825821 7001_ $$0P:(DE-Juel1)157922$$aSchnepf, Andrea$$b2$$ufzj
000825821 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b3$$ufzj
000825821 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b4$$ufzj
000825821 7001_ $$0P:(DE-HGF)0$$aGlyn Bengough, A.$$b5
000825821 7001_ $$0P:(DE-Juel1)129549$$aVereecken, Harry$$b6$$ufzj
000825821 773__ $$0PERI:(DE-600)1478535-3$$a10.1007/s11104-016-3144-2$$n1-2$$p99–116$$tPlant and soil$$v415$$x1573-5036$$y2016
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.pdf$$yRestricted
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.gif?subformat=icon$$xicon$$yRestricted
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825821 8564_ $$uhttps://juser.fz-juelich.de/record/825821/files/10.1007_s11104-016-3144-2.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825821 909CO $$ooai:juser.fz-juelich.de:825821$$pVDB:Earth_Environment$$pVDB
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165987$$aForschungszentrum Jülich$$b0$$kFZJ
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144686$$aForschungszentrum Jülich$$b1$$kFZJ
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157922$$aForschungszentrum Jülich$$b2$$kFZJ
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b3$$kFZJ
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b4$$kFZJ
000825821 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129549$$aForschungszentrum Jülich$$b6$$kFZJ
000825821 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000825821 9141_ $$y2017
000825821 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825821 915__ $$0StatID:(DE-HGF)0430$$2StatID$$aNational-Konsortium
000825821 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPLANT SOIL : 2015
000825821 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825821 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825821 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825821 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825821 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825821 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825821 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825821 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825821 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825821 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000825821 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000825821 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825821 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000825821 980__ $$ajournal
000825821 980__ $$aVDB
000825821 980__ $$aI:(DE-Juel1)IBG-3-20101118
000825821 980__ $$aUNRESTRICTED