000825869 001__ 825869
000825869 005__ 20240712113054.0
000825869 0247_ $$2doi$$a10.1002/cphc.201601095
000825869 0247_ $$2ISSN$$a1439-4235
000825869 0247_ $$2ISSN$$a1439-7641
000825869 0247_ $$2WOS$$aWOS:000393190100024
000825869 0247_ $$2altmetric$$aaltmetric:14161537
000825869 0247_ $$2pmid$$apmid:27862878
000825869 037__ $$aFZJ-2017-00153
000825869 082__ $$a540
000825869 1001_ $$0P:(DE-HGF)0$$aHeckmann, Andreas$$b0
000825869 245__ $$aSuppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance
000825869 260__ $$aWeinheim$$bWiley-VCH Verl.$$c2017
000825869 3367_ $$2DRIVER$$aarticle
000825869 3367_ $$2DataCite$$aOutput Types/Journal article
000825869 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483692651_19218
000825869 3367_ $$2BibTeX$$aARTICLE
000825869 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825869 3367_ $$00$$2EndNote$$aJournal Article
000825869 520__ $$aBatteries based on cathode materials that operate at high cathode potentials, such as LiNi0.5Mn1.5O4 (LNMO), in lithium-ion batteries or graphitic carbons in dual-ion batteries suffer from anodic dissolution of the aluminum (Al) current collector in organic solvent-based electrolytes based on imide salts, such as lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In this work, we developed a protective surface modification for the Al current collector by applying ceramic coatings of chromium nitride (CrxN) and studied the anodic Al dissolution behavior. By magnetron sputter deposition, two different coating types, which differ in their composition according to the CrN and Cr2N phases, were prepared and characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and their electronic conductivity. Furthermore, the anodic dissolution behavior was studied by cyclic voltammetry and chronocoulometry measurements in two different electrolyte mixtures, that is, LiTFSI in ethyl methyl sulfone and LiTFSI in ethylene carbonate/dimethyl carbonate 1:1 (by weight). These measurements showed a remarkably reduced current density or cumulative charge during the charge process, indicating an improved anodic stability of the protected Al current collector. The coating surfaces after electrochemical treatment were characterized by means of SEM and XPS, and the presence or lack of pit formation, as well as electrolyte degradation products could be well correlated to the electrochemical results.
000825869 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000825869 588__ $$aDataset connected to CrossRef
000825869 7001_ $$0P:(DE-Juel1)157800$$aKrott, Manuel$$b1
000825869 7001_ $$0P:(DE-HGF)0$$aStreipert, Benjamin$$b2
000825869 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b3
000825869 7001_ $$0P:(DE-Juel1)166130$$aWinter, Martin$$b4$$eCorresponding author
000825869 7001_ $$00000-0002-2097-5193$$aPlacke, Tobias$$b5
000825869 773__ $$0PERI:(DE-600)2025223-7$$a10.1002/cphc.201601095$$n1$$p156-163$$tChemPhysChem$$v18$$x1439-4235$$y2017
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.pdf$$yRestricted
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.gif?subformat=icon$$xicon$$yRestricted
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825869 8564_ $$uhttps://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825869 909CO $$ooai:juser.fz-juelich.de:825869$$pVDB
000825869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157800$$aForschungszentrum Jülich$$b1$$kFZJ
000825869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich$$b3$$kFZJ
000825869 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166130$$aForschungszentrum Jülich$$b4$$kFZJ
000825869 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000825869 9141_ $$y2017
000825869 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825869 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825869 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825869 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEMPHYSCHEM : 2015
000825869 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825869 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825869 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825869 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825869 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825869 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825869 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000825869 9201_ $$0I:(DE-Juel1)IEK-12-20141217$$kIEK-12$$lHelmholtz-Institut Münster Ionenleiter für Energiespeicher$$x1
000825869 980__ $$ajournal
000825869 980__ $$aVDB
000825869 980__ $$aI:(DE-Juel1)IEK-1-20101013
000825869 980__ $$aI:(DE-Juel1)IEK-12-20141217
000825869 980__ $$aUNRESTRICTED
000825869 981__ $$aI:(DE-Juel1)IMD-4-20141217
000825869 981__ $$aI:(DE-Juel1)IMD-2-20101013