001     825869
005     20240712113054.0
024 7 _ |a 10.1002/cphc.201601095
|2 doi
024 7 _ |a 1439-4235
|2 ISSN
024 7 _ |a 1439-7641
|2 ISSN
024 7 _ |a WOS:000393190100024
|2 WOS
024 7 _ |a altmetric:14161537
|2 altmetric
024 7 _ |a pmid:27862878
|2 pmid
037 _ _ |a FZJ-2017-00153
082 _ _ |a 540
100 1 _ |a Heckmann, Andreas
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Suppression of Aluminum Current Collector Dissolution by Protective Ceramic Coatings for Better High-Voltage Battery Performance
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH Verl.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483692651_19218
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Batteries based on cathode materials that operate at high cathode potentials, such as LiNi0.5Mn1.5O4 (LNMO), in lithium-ion batteries or graphitic carbons in dual-ion batteries suffer from anodic dissolution of the aluminum (Al) current collector in organic solvent-based electrolytes based on imide salts, such as lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In this work, we developed a protective surface modification for the Al current collector by applying ceramic coatings of chromium nitride (CrxN) and studied the anodic Al dissolution behavior. By magnetron sputter deposition, two different coating types, which differ in their composition according to the CrN and Cr2N phases, were prepared and characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and their electronic conductivity. Furthermore, the anodic dissolution behavior was studied by cyclic voltammetry and chronocoulometry measurements in two different electrolyte mixtures, that is, LiTFSI in ethyl methyl sulfone and LiTFSI in ethylene carbonate/dimethyl carbonate 1:1 (by weight). These measurements showed a remarkably reduced current density or cumulative charge during the charge process, indicating an improved anodic stability of the protected Al current collector. The coating surfaces after electrochemical treatment were characterized by means of SEM and XPS, and the presence or lack of pit formation, as well as electrolyte degradation products could be well correlated to the electrochemical results.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Krott, Manuel
|0 P:(DE-Juel1)157800
|b 1
700 1 _ |a Streipert, Benjamin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 3
700 1 _ |a Winter, Martin
|0 P:(DE-Juel1)166130
|b 4
|e Corresponding author
700 1 _ |a Placke, Tobias
|0 0000-0002-2097-5193
|b 5
773 _ _ |a 10.1002/cphc.201601095
|0 PERI:(DE-600)2025223-7
|n 1
|p 156-163
|t ChemPhysChem
|v 18
|y 2017
|x 1439-4235
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825869/files/Heckmann_et_al-2016-ChemPhysChem.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825869
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157800
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)166130
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b CHEMPHYSCHEM : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
920 1 _ |0 I:(DE-Juel1)IEK-12-20141217
|k IEK-12
|l Helmholtz-Institut Münster Ionenleiter für Energiespeicher
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a I:(DE-Juel1)IEK-12-20141217
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-4-20141217
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21