000825878 001__ 825878
000825878 005__ 20210129225450.0
000825878 0247_ $$2doi$$a10.1364/OE.23.023526
000825878 0247_ $$2WOS$$aWOS:000362419900050
000825878 0247_ $$2altmetric$$aaltmetric:21832090
000825878 037__ $$aFZJ-2017-00161
000825878 041__ $$aEnglish
000825878 082__ $$a530
000825878 1001_ $$0P:(DE-HGF)0$$aAzadeh, Saeed Sharif$$b0$$eCorresponding author
000825878 245__ $$aLow V_π Silicon photonics modulators with highly linear epitaxially grown phase shifters
000825878 260__ $$aWashington, DC$$bSoc.$$c2015
000825878 3367_ $$2DRIVER$$aarticle
000825878 3367_ $$2DataCite$$aOutput Types/Journal article
000825878 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483958538_19245
000825878 3367_ $$2BibTeX$$aARTICLE
000825878 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825878 3367_ $$00$$2EndNote$$aJournal Article
000825878 520__ $$aWe report on the design of Silicon Mach-Zehnder carrier depletion modulators relying on epitaxially grown vertical junction diodes. Unprecedented spatial control over doping profiles resulting from combining local ion implantation with epitaxial overgrowth enables highly linear phase shifters with high modulation efficiency and comparatively low insertion losses. A high average phase shifter efficiency of VπL = 0.74 V⋅cm is reached between 0 V and 2 V reverse bias, while maintaining optical losses at 4.2 dB/mm and the intrinsic RC cutoff frequency at 48 GHz (both at 1 V reverse bias). The fabrication process, the sensitivity to fabrication tolerances, the phase shifter performance and examples of lumped element and travelling wave modulators are modeled in detail. Device linearity is shown to be sufficient to support complex modulation formats such as 16-QAM.
000825878 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000825878 588__ $$aDataset connected to CrossRef
000825878 7001_ $$0P:(DE-HGF)0$$aMerget, Florian$$b1
000825878 7001_ $$0P:(DE-HGF)0$$aRomero-García, Sebastian$$b2
000825878 7001_ $$0P:(DE-HGF)0$$aMoscoso-Mártir, Alvaro$$b3
000825878 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b4
000825878 7001_ $$0P:(DE-HGF)0$$aMüller, Juliana$$b5
000825878 7001_ $$0P:(DE-Juel1)128609$$aMantl, Siegfried$$b6
000825878 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan Mihai$$b7$$ufzj
000825878 7001_ $$0P:(DE-HGF)0$$aWitzens, Jeremy$$b8$$eCorresponding author
000825878 773__ $$0PERI:(DE-600)1491859-6$$a10.1364/OE.23.023526$$gVol. 23, no. 18, p. 23526 -$$n18$$p23526$$tOptics express$$v23$$x1094-4087$$y2015
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.pdf$$yRestricted
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.gif?subformat=icon$$xicon$$yRestricted
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825878 8564_ $$uhttps://juser.fz-juelich.de/record/825878/files/2015%20Silicon%20photonics%20modulators-Optics%20Express.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825878 909CO $$ooai:juser.fz-juelich.de:825878$$pVDB
000825878 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bOPT EXPRESS : 2015
000825878 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825878 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825878 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825878 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825878 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825878 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825878 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825878 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825878 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b0$$kRWTH
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b1$$kRWTH
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b2$$kRWTH
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b3$$kRWTH
000825878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b4$$kFZJ
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b5$$kRWTH
000825878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128609$$aForschungszentrum Jülich$$b6$$kFZJ
000825878 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b7$$kFZJ
000825878 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-HGF)0$$aRWTH Aachen$$b8$$kRWTH
000825878 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000825878 9141_ $$y2016
000825878 920__ $$lyes
000825878 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000825878 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000825878 980__ $$ajournal
000825878 980__ $$aVDB
000825878 980__ $$aI:(DE-Juel1)PGI-9-20110106
000825878 980__ $$aI:(DE-82)080009_20140620
000825878 980__ $$aUNRESTRICTED