000825880 001__ 825880
000825880 005__ 20210129225450.0
000825880 0247_ $$2doi$$a10.1063/1.4953784
000825880 0247_ $$2ISSN$$a0003-6951
000825880 0247_ $$2ISSN$$a1077-3118
000825880 0247_ $$2WOS$$aWOS:000379037200029
000825880 0247_ $$2Handle$$a2128/17235
000825880 037__ $$aFZJ-2017-00162
000825880 082__ $$a530
000825880 1001_ $$0P:(DE-HGF)0$$aWendav, Torsten$$b0$$eCorresponding author
000825880 245__ $$aCompositional dependence of the band-gap of Ge$_{1−x−y}$Si$_{x}$Sn$_{y}$ alloys
000825880 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2016
000825880 3367_ $$2DRIVER$$aarticle
000825880 3367_ $$2DataCite$$aOutput Types/Journal article
000825880 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483959181_19249
000825880 3367_ $$2BibTeX$$aARTICLE
000825880 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825880 3367_ $$00$$2EndNote$$aJournal Article
000825880 520__ $$aThe group-IV semiconductor alloy Ge1−x−ySixSny has recently attracted great interest due to its prospective potential for use in optoelectronics, electronics, and photovoltaics. Here, we investigate molecular beam epitaxy grown Ge1−x−ySixSny alloys lattice-matched to Ge with large Si and Sn concentrations of up to 42% and 10%, respectively. The samples were characterized in detail by Rutherford backscattering/channeling spectroscopy for composition and crystal quality, x-ray diffraction for strain determination, and photoluminescence spectroscopy for the assessment of band-gap energies. Moreover, the experimentally extracted material parameters were used to determine the SiSn bowing and to make predictions about the optical transition energy.
000825880 536__ $$0G:(DE-HGF)POF3-521$$a521 - Controlling Electron Charge-Based Phenomena (POF3-521)$$cPOF3-521$$fPOF III$$x0
000825880 588__ $$aDataset connected to CrossRef
000825880 7001_ $$0P:(DE-HGF)0$$aFischer, Inga A.$$b1
000825880 7001_ $$0P:(DE-HGF)0$$aMontanari, Michele$$b2
000825880 7001_ $$0P:(DE-HGF)0$$aZoellner, Marvin Hartwig$$b3
000825880 7001_ $$0P:(DE-HGF)0$$aKlesse, Wolfgang$$b4
000825880 7001_ $$0P:(DE-HGF)0$$aCapellini, Giovanni$$b5
000825880 7001_ $$0P:(DE-Juel1)161247$$avon den Driesch, Nils$$b6
000825880 7001_ $$0P:(DE-HGF)0$$aOehme, Michael$$b7
000825880 7001_ $$0P:(DE-Juel1)125569$$aBuca, Dan$$b8
000825880 7001_ $$0P:(DE-HGF)0$$aBusch, Kurt$$b9
000825880 7001_ $$0P:(DE-HGF)0$$aSchulze, Jörg$$b10$$eCorresponding author
000825880 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4953784$$gVol. 108, no. 24, p. 242104 -$$n24$$p242104 -$$tApplied physics letters$$v108$$x1077-3118$$y2016
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.pdf$$yOpenAccess
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.gif?subformat=icon$$xicon$$yOpenAccess
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825880 8564_ $$uhttps://juser.fz-juelich.de/record/825880/files/2016%20APL%20-SiGeSn%20bowing%20parameter.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825880 909CO $$ooai:juser.fz-juelich.de:825880$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000825880 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161247$$aForschungszentrum Jülich$$b6$$kFZJ
000825880 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)125569$$aForschungszentrum Jülich$$b8$$kFZJ
000825880 9131_ $$0G:(DE-HGF)POF3-521$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Electron Charge-Based Phenomena$$x0
000825880 9141_ $$y2016
000825880 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825880 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825880 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000825880 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825880 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825880 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825880 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825880 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825880 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825880 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825880 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825880 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825880 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825880 920__ $$lyes
000825880 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000825880 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000825880 980__ $$ajournal
000825880 980__ $$aVDB
000825880 980__ $$aUNRESTRICTED
000825880 980__ $$aI:(DE-Juel1)PGI-9-20110106
000825880 980__ $$aI:(DE-82)080009_20140620
000825880 9801_ $$aFullTexts