TY  - JOUR
AU  - Knist, Sebastian
AU  - Goergen, Klaus
AU  - Buonomo, Erasmo
AU  - Christensen, Ole Bøssing
AU  - Colette, Augustin
AU  - Cardoso, Rita M.
AU  - Fealy, Rowan
AU  - Fernández, Jesús
AU  - García-Díez, Markel
AU  - Jacob, Daniela
AU  - Kartsios, Stergios
AU  - Katragkou, Eleni
AU  - Keuler, Klaus
AU  - Mayer, Stephanie
AU  - van Meijgaard, Erik
AU  - Nikulin, Grigory
AU  - Soares, Pedro M. M.
AU  - Sobolowski, Stefan
AU  - Szepszo, Gabriella
AU  - Teichmann, Claas
AU  - Vautard, Robert
AU  - Warrach-Sagi, Kirsten
AU  - Wulfmeyer, Volker
AU  - Simmer, Clemens
TI  - Land-atmosphere coupling in EURO-CORDEX evaluation experiments
JO  - Journal of geophysical research / Atmospheres
VL  - 122
IS  - 1
SN  - 2169-897X
CY  - Hoboken, NJ
PB  - Wiley
M1  - FZJ-2017-00176
SP  - 79-103
PY  - 2017
AB  - Interactions between the land surface and the atmosphere play a fundamental role in the weather and climate system. Here we present a comparison of summertime land-atmosphere coupling strength found in a subset of the ERA-Interim-driven European domain Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) model ensemble (1989–2008). Most of the regional climate models (RCMs) reproduce the overall soil moisture interannual variability, spatial patterns, and annual cycles of surface exchange fluxes for the different European climate zones suggested by the observational Global Land Evaporation Amsterdam Model (GLEAM) and FLUXNET data sets. However, some RCMs differ substantially from FLUXNET observations for some regions. The coupling strength is quantified by the correlation between the surface sensible and the latent heat flux, and by the correlation between the latent heat flux and 2 m temperature. The first correlation is compared to its estimate from the few available long-term European high-quality FLUXNET observations, and the latter to results from gridded GLEAM data. The RCM simulations agree with both observational datasets in the large-scale pattern characterized by strong coupling in southern Europe and weak coupling in northern Europe. However, in the transition zone from strong to weak coupling covering large parts of central Europe many of the RCMs tend to overestimate the coupling strength in comparison to both FLUXNET and GLEAM. The RCM ensemble spread is caused primarily by the different land surface models applied, and by the model-specific weather conditions resulting from different atmospheric parameterizations.
LB  - PUB:(DE-HGF)16
UR  - <Go to ISI:>//WOS:000393877800005
DO  - DOI:10.1002/2016JD025476
UR  - https://juser.fz-juelich.de/record/825897
ER  -