001     825897
005     20220930130114.0
024 7 _ |a 10.1002/2016JD025476
|2 doi
024 7 _ |a 0148-0227
|2 ISSN
024 7 _ |a 2156-2202
|2 ISSN
024 7 _ |a 2169-897X
|2 ISSN
024 7 _ |a 2169-8996
|2 ISSN
024 7 _ |a WOS:000393877800005
|2 WOS
024 7 _ |a 2128/16029
|2 Handle
024 7 _ |a altmetric:15535043
|2 altmetric
037 _ _ |a FZJ-2017-00176
082 _ _ |a 550
100 1 _ |a Knist, Sebastian
|0 P:(DE-Juel1)158027
|b 0
|e Corresponding author
245 _ _ |a Land-atmosphere coupling in EURO-CORDEX evaluation experiments
260 _ _ |a Hoboken, NJ
|c 2017
|b Wiley
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1512111884_28135
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Interactions between the land surface and the atmosphere play a fundamental role in the weather and climate system. Here we present a comparison of summertime land-atmosphere coupling strength found in a subset of the ERA-Interim-driven European domain Coordinated Regional Climate Downscaling Experiment (EURO-CORDEX) model ensemble (1989–2008). Most of the regional climate models (RCMs) reproduce the overall soil moisture interannual variability, spatial patterns, and annual cycles of surface exchange fluxes for the different European climate zones suggested by the observational Global Land Evaporation Amsterdam Model (GLEAM) and FLUXNET data sets. However, some RCMs differ substantially from FLUXNET observations for some regions. The coupling strength is quantified by the correlation between the surface sensible and the latent heat flux, and by the correlation between the latent heat flux and 2 m temperature. The first correlation is compared to its estimate from the few available long-term European high-quality FLUXNET observations, and the latter to results from gridded GLEAM data. The RCM simulations agree with both observational datasets in the large-scale pattern characterized by strong coupling in southern Europe and weak coupling in northern Europe. However, in the transition zone from strong to weak coupling covering large parts of central Europe many of the RCMs tend to overestimate the coupling strength in comparison to both FLUXNET and GLEAM. The RCM ensemble spread is caused primarily by the different land surface models applied, and by the model-specific weather conditions resulting from different atmospheric parameterizations.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Goergen, Klaus
|0 P:(DE-Juel1)156253
|b 1
700 1 _ |a Buonomo, Erasmo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Christensen, Ole Bøssing
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Colette, Augustin
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cardoso, Rita M.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fealy, Rowan
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fernández, Jesús
|0 P:(DE-HGF)0
|b 7
700 1 _ |a García-Díez, Markel
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Jacob, Daniela
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kartsios, Stergios
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Katragkou, Eleni
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Keuler, Klaus
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Mayer, Stephanie
|0 P:(DE-HGF)0
|b 13
700 1 _ |a van Meijgaard, Erik
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Nikulin, Grigory
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Soares, Pedro M. M.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Sobolowski, Stefan
|0 P:(DE-HGF)0
|b 17
700 1 _ |a Szepszo, Gabriella
|0 P:(DE-HGF)0
|b 18
700 1 _ |a Teichmann, Claas
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Vautard, Robert
|0 P:(DE-HGF)0
|b 20
700 1 _ |a Warrach-Sagi, Kirsten
|0 P:(DE-HGF)0
|b 21
700 1 _ |a Wulfmeyer, Volker
|0 P:(DE-HGF)0
|b 22
700 1 _ |a Simmer, Clemens
|0 P:(DE-HGF)0
|b 23
773 _ _ |a 10.1002/2016JD025476
|0 PERI:(DE-600)2016800-7
|n 1
|p 79-103
|t Journal of geophysical research / Atmospheres
|v 122
|y 2017
|x 2169-897X
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|x icon
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.gif?subformat=icon
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|x icon-1440
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|x icon-180
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-180
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|x icon-640
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.jpg?subformat=icon-640
856 4 _ |y Published on 2017-01-07. Available in OpenAccess from 2017-07-07.
|x pdfa
|u https://juser.fz-juelich.de/record/825897/files/Knist_et_al-2017-Journal_of_Geophysical_Research__Atmospheres.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825897
|p openaire
|p open_access
|p OpenAPC
|p driver
|p VDB:Earth_Environment
|p VDB
|p openCost
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)158027
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156253
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 6
|6 0000-0002-9601-2633
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 0000-0002-2790-3782
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 21
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J GEOPHYS RES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a APC
980 1 _ |a APC
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21