000825901 001__ 825901
000825901 005__ 20210129225453.0
000825901 0247_ $$2doi$$a10.1088/1367-2630/aa5597
000825901 0247_ $$2Handle$$a2128/14153
000825901 0247_ $$2WOS$$aWOS:000393655400002
000825901 0247_ $$2altmetric$$aaltmetric:15274876
000825901 037__ $$aFZJ-2017-00180
000825901 082__ $$a530
000825901 1001_ $$0P:(DE-HGF)0$$aRohden, Martin$$b0$$eCorresponding author
000825901 245__ $$aCuring critical links in oscillator networks as power flow models
000825901 260__ $$aBristol and Bad Honnef$$bIOP Publishing Ltd. and Dt. Physikalische Ges.$$c2017
000825901 3367_ $$2DRIVER$$aarticle
000825901 3367_ $$2DataCite$$aOutput Types/Journal article
000825901 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1491568690_654
000825901 3367_ $$2BibTeX$$aARTICLE
000825901 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825901 3367_ $$00$$2EndNote$$aJournal Article
000825901 520__ $$aModern societies crucially depend on the robust supply with electric energy so that blackouts of power grids can have far reaching consequences. Typically, large scale blackouts take place after a cascade of failures: the failure of a single infrastructure component, such as a critical transmission line, results in several subsequent failures that spread across large parts of the network. Improving the robustness of a network to prevent such secondary failures is thus key for assuring a reliable power supply. In this article we analyze the nonlocal rerouting of power flows after transmission line failures for a simplified AC power grid model and compare different strategies to improve network robustness. We identify critical links in the grid and compute alternative pathways to quantify the grid's redundant capacity and to find bottlenecks along the pathways. Different strategies are developed and tested to increase transmission capacities to restore stability with respect to transmission line failures. We show that local and nonlocal strategies typically perform alike: one can equally well cure critical links by providing backup capacities locally or by extending the capacities of bottleneck links at remote locations.
000825901 536__ $$0G:(DE-HGF)POF3-153$$a153 - Assessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security (POF3-153)$$cPOF3-153$$fPOF III$$x0
000825901 536__ $$0G:(Grant)PIK_082017$$aCoNDyNet - Kollektive Nichtlineare Dynamik Komplexer Stromnetze (PIK_082017)$$cPIK_082017$$x1
000825901 536__ $$0G:(HGF)VH-NG-1025_20112014$$aVH-NG-1025 - Helmholtz Young Investigators Group "Efficiency, Emergence and Economics of future supply networks" (VH-NG-1025_20112014)$$cVH-NG-1025_20112014$$x2
000825901 588__ $$aDataset connected to CrossRef
000825901 7001_ $$0P:(DE-Juel1)162277$$aWitthaut, Dirk$$b1
000825901 7001_ $$0P:(DE-HGF)0$$aTimme, Marc$$b2
000825901 7001_ $$0P:(DE-HGF)0$$aMeyer-Ortmanns, Hildegard$$b3
000825901 773__ $$0PERI:(DE-600)1464444-7$$a10.1088/1367-2630/aa5597$$gVol. 19, no. 1, p. 013002 -$$n1$$p013002$$tNew journal of physics$$v19$$x1367-2630$$y2017
000825901 8564_ $$uhttps://juser.fz-juelich.de/record/825901/files/Rohden_NJP19_013002.pdf$$yOpenAccess
000825901 8564_ $$uhttps://juser.fz-juelich.de/record/825901/files/Rohden_NJP19_013002.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825901 909CO $$ooai:juser.fz-juelich.de:825901$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825901 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162277$$aForschungszentrum Jülich$$b1$$kFZJ
000825901 9131_ $$0G:(DE-HGF)POF3-153$$1G:(DE-HGF)POF3-150$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lTechnologie, Innovation und Gesellschaft$$vAssessment of Energy Systems – Addressing Issues of Energy Efficiency and Energy Security$$x0
000825901 9141_ $$y2017
000825901 915__ $$0LIC:(DE-HGF)CCBY3$$2HGFVOC$$aCreative Commons Attribution CC BY 3.0
000825901 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825901 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825901 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNEW J PHYS : 2015
000825901 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825901 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825901 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825901 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825901 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825901 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825901 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825901 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825901 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825901 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825901 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825901 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825901 920__ $$lno
000825901 9201_ $$0I:(DE-Juel1)IEK-STE-20101013$$kIEK-STE$$lSystemforschung und Technologische Entwicklung$$x0
000825901 980__ $$ajournal
000825901 980__ $$aVDB
000825901 980__ $$aUNRESTRICTED
000825901 980__ $$aI:(DE-Juel1)IEK-STE-20101013
000825901 9801_ $$aFullTexts