000825917 001__ 825917
000825917 005__ 20240619092051.0
000825917 0247_ $$2doi$$a10.1021/acs.macromol.6b01906
000825917 0247_ $$2ISSN$$a0024-9297
000825917 0247_ $$2ISSN$$a1520-5835
000825917 0247_ $$2WOS$$aWOS:000388913500025
000825917 037__ $$aFZJ-2017-00196
000825917 082__ $$a540
000825917 1001_ $$0P:(DE-Juel1)145571$$aHofmann, M.$$b0$$eCorresponding author
000825917 245__ $$aDynamics of a Paradigmatic Linear Polymer: A Proton Field-Cycling NMR Relaxometry Study on Poly(ethylene–propylene)
000825917 260__ $$aWashington, DC$$bSoc.$$c2016
000825917 3367_ $$2DRIVER$$aarticle
000825917 3367_ $$2DataCite$$aOutput Types/Journal article
000825917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1483966117_19245
000825917 3367_ $$2BibTeX$$aARTICLE
000825917 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825917 3367_ $$00$$2EndNote$$aJournal Article
000825917 520__ $$aThe dynamics of melts of linear poly(ethylene-alt-propylene) (PEP) of different molar masses (M) is investigated by 1H field-cycling (FC) NMR relaxometry. Employing a commercial and a home-built relaxometer the spin-lattice relaxation rate R1(ω) is measured in the frequency range of 200 Hz to 30 MHz and the temperature range of 200–400 K. Transforming the FC NMR relaxation data to the susceptibility representation and applying frequency–temperature superposition, master curves for the dipolar correlation function CDD(t/τα) (containing intra- and intermolecular contributions) are constructed which extend up to six decades in amplitude and eight in time. Here, τα is the time scale of the structural (α-) relaxation, which is obtained over several decades. Comparison with previously reported FC data for polybutadiene (PB) discloses very similar CDD(t). Depending on M, all the five relaxation regimes of a polymer melt are covered: in addition to the α-process (0) and the terminal relaxation (IV), which are immanent to all liquids, three polymer-specific power-law regimes (Rouse, I; constraint Rouse, II; and reptation, III) are found, i.e. CDD(t) ∝ t–ε. The corresponding exponents (εI–III) are close to those predicted by the tube-reptation (TR) model for the segmental translation. In contrast to previous interpretation the intermolecular relaxation dominates CDD(t), in particular in regime II and beyond. The decomposition into intra- (mediated by segmental reorientation) and intermolecular relaxation (mediated by segmental translation) via isotope dilution experiments yields Cinter(t) = Ctrans(t) ∝ t-0.28±0.05 concerning PEP and Cinter(t) ∝ t-0.30±0.05 concerning PB for regime II (high-M limit). For the reorientational correlation function Cintra(t) = C2(t) ∝ t–0.50±0.05 (PEP) and C2(t) ∝ t–0.45±0.05 (PB) are obtained. These exponents εIIintra are at variance with εIITR = 0.25 predicted by the TR model. The fact that translation conforms to the TR model, while reorientation does not, now confirmed for the two polymers PEP and PB, challenges de Gennes’ return-to-origin hypothesis which assumes strong translational-rotational coupling in the TR model.
000825917 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000825917 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x1
000825917 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x2
000825917 588__ $$aDataset connected to CrossRef
000825917 7001_ $$0P:(DE-HGF)0$$aKresse, B.$$b1
000825917 7001_ $$0P:(DE-HGF)0$$aHeymann, L.$$b2
000825917 7001_ $$0P:(DE-HGF)0$$aPrivalov, A. F.$$b3
000825917 7001_ $$0P:(DE-Juel1)131036$$aWillner, L.$$b4
000825917 7001_ $$0P:(DE-HGF)0$$aFatkullin, N.$$b5
000825917 7001_ $$0P:(DE-HGF)0$$aAksel, N.$$b6
000825917 7001_ $$0P:(DE-HGF)0$$aFujara, F.$$b7
000825917 7001_ $$0P:(DE-HGF)0$$aRössler, E. A.$$b8$$eCorresponding author
000825917 773__ $$0PERI:(DE-600)1491942-4$$a10.1021/acs.macromol.6b01906$$gVol. 49, no. 22, p. 8622 - 8632$$n22$$p8622 - 8632$$tMacromolecules$$v49$$x1520-5835$$y2016
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.pdf$$yRestricted
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.gif?subformat=icon$$xicon$$yRestricted
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825917 8564_ $$uhttps://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825917 909CO $$ooai:juser.fz-juelich.de:825917$$pVDB
000825917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131036$$aForschungszentrum Jülich$$b4$$kFZJ
000825917 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000825917 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x1
000825917 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000825917 9141_ $$y2016
000825917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825917 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825917 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMACROMOLECULES : 2015
000825917 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bMACROMOLECULES : 2015
000825917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825917 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825917 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825917 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825917 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825917 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000825917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825917 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000825917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825917 9201_ $$0I:(DE-Juel1)ICS-1-20110106$$kICS-1$$lNeutronenstreuung $$x0
000825917 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000825917 980__ $$ajournal
000825917 980__ $$aVDB
000825917 980__ $$aUNRESTRICTED
000825917 980__ $$aI:(DE-Juel1)ICS-1-20110106
000825917 980__ $$aI:(DE-Juel1)JCNS-1-20110106
000825917 981__ $$aI:(DE-Juel1)IBI-8-20200312
000825917 981__ $$aI:(DE-Juel1)JCNS-1-20110106