001     825917
005     20240619092051.0
024 7 _ |a 10.1021/acs.macromol.6b01906
|2 doi
024 7 _ |a 0024-9297
|2 ISSN
024 7 _ |a 1520-5835
|2 ISSN
024 7 _ |a WOS:000388913500025
|2 WOS
037 _ _ |a FZJ-2017-00196
082 _ _ |a 540
100 1 _ |a Hofmann, M.
|0 P:(DE-Juel1)145571
|b 0
|e Corresponding author
245 _ _ |a Dynamics of a Paradigmatic Linear Polymer: A Proton Field-Cycling NMR Relaxometry Study on Poly(ethylene–propylene)
260 _ _ |a Washington, DC
|c 2016
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1483966117_19245
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The dynamics of melts of linear poly(ethylene-alt-propylene) (PEP) of different molar masses (M) is investigated by 1H field-cycling (FC) NMR relaxometry. Employing a commercial and a home-built relaxometer the spin-lattice relaxation rate R1(ω) is measured in the frequency range of 200 Hz to 30 MHz and the temperature range of 200–400 K. Transforming the FC NMR relaxation data to the susceptibility representation and applying frequency–temperature superposition, master curves for the dipolar correlation function CDD(t/τα) (containing intra- and intermolecular contributions) are constructed which extend up to six decades in amplitude and eight in time. Here, τα is the time scale of the structural (α-) relaxation, which is obtained over several decades. Comparison with previously reported FC data for polybutadiene (PB) discloses very similar CDD(t). Depending on M, all the five relaxation regimes of a polymer melt are covered: in addition to the α-process (0) and the terminal relaxation (IV), which are immanent to all liquids, three polymer-specific power-law regimes (Rouse, I; constraint Rouse, II; and reptation, III) are found, i.e. CDD(t) ∝ t–ε. The corresponding exponents (εI–III) are close to those predicted by the tube-reptation (TR) model for the segmental translation. In contrast to previous interpretation the intermolecular relaxation dominates CDD(t), in particular in regime II and beyond. The decomposition into intra- (mediated by segmental reorientation) and intermolecular relaxation (mediated by segmental translation) via isotope dilution experiments yields Cinter(t) = Ctrans(t) ∝ t-0.28±0.05 concerning PEP and Cinter(t) ∝ t-0.30±0.05 concerning PB for regime II (high-M limit). For the reorientational correlation function Cintra(t) = C2(t) ∝ t–0.50±0.05 (PEP) and C2(t) ∝ t–0.45±0.05 (PB) are obtained. These exponents εIIintra are at variance with εIITR = 0.25 predicted by the TR model. The fact that translation conforms to the TR model, while reorientation does not, now confirmed for the two polymers PEP and PB, challenges de Gennes’ return-to-origin hypothesis which assumes strong translational-rotational coupling in the TR model.
536 _ _ |a 551 - Functional Macromolecules and Complexes (POF3-551)
|0 G:(DE-HGF)POF3-551
|c POF3-551
|f POF III
|x 0
536 _ _ |a 6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)
|0 G:(DE-HGF)POF3-6G4
|c POF3-623
|f POF III
|x 1
536 _ _ |a 6215 - Soft Matter, Health and Life Sciences (POF3-621)
|0 G:(DE-HGF)POF3-6215
|c POF3-621
|f POF III
|x 2
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kresse, B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Heymann, L.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Privalov, A. F.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Willner, L.
|0 P:(DE-Juel1)131036
|b 4
700 1 _ |a Fatkullin, N.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Aksel, N.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Fujara, F.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Rössler, E. A.
|0 P:(DE-HGF)0
|b 8
|e Corresponding author
773 _ _ |a 10.1021/acs.macromol.6b01906
|g Vol. 49, no. 22, p. 8622 - 8632
|0 PERI:(DE-600)1491942-4
|n 22
|p 8622 - 8632
|t Macromolecules
|v 49
|y 2016
|x 1520-5835
856 4 _ |u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/825917/files/acs.macromol.6b01906.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825917
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)131036
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-551
|2 G:(DE-HGF)POF3-500
|v Functional Macromolecules and Complexes
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-623
|2 G:(DE-HGF)POF3-600
|v Facility topic: Neutrons for Research on Condensed Matter
|9 G:(DE-HGF)POF3-6G4
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
913 1 _ |a DE-HGF
|b Forschungsbereich Materie
|l Von Materie zu Materialien und Leben
|1 G:(DE-HGF)POF3-620
|0 G:(DE-HGF)POF3-621
|2 G:(DE-HGF)POF3-600
|v In-house research on the structure, dynamics and function of matter
|9 G:(DE-HGF)POF3-6215
|x 2
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a No Authors Fulltext
|0 StatID:(DE-HGF)0550
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MACROMOLECULES : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b MACROMOLECULES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)ICS-1-20110106
|k ICS-1
|l Neutronenstreuung
|x 0
920 1 _ |0 I:(DE-Juel1)JCNS-1-20110106
|k Neutronenstreuung ; JCNS-1
|l Neutronenstreuung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-1-20110106
980 _ _ |a I:(DE-Juel1)JCNS-1-20110106
981 _ _ |a I:(DE-Juel1)IBI-8-20200312
981 _ _ |a I:(DE-Juel1)JCNS-1-20110106


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21