000825948 001__ 825948
000825948 005__ 20240610120357.0
000825948 0247_ $$2doi$$a10.1109/TASC.2016.2631419
000825948 0247_ $$2ISSN$$a1051-8223
000825948 0247_ $$2ISSN$$a1558-2515
000825948 0247_ $$2WOS$$aWOS:000391318100001
000825948 037__ $$aFZJ-2017-00220
000825948 082__ $$a530
000825948 1001_ $$0P:(DE-Juel1)130633$$aFaley, Michael$$b0$$ufzj
000825948 245__ $$aNondestructive Evaluation Using a High-T $_{c}$ SQUID Microscope
000825948 260__ $$aNew York, NY$$bIEEE$$c2017
000825948 3367_ $$2DRIVER$$aarticle
000825948 3367_ $$2DataCite$$aOutput Types/Journal article
000825948 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484045215_19267
000825948 3367_ $$2BibTeX$$aARTICLE
000825948 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825948 3367_ $$00$$2EndNote$$aJournal Article
000825948 520__ $$aWe report the application of a scanning high-Tc SQUID (superconducting quantum interference device) microscope with a ferromagnetic flux guide for the nondestructive evaluation of weld seams and wear tracks and scars on austenitic stainless steel plates as well as measurement of magnetic stray fields distribution above patterned by electron lithography 30-nm-thick cobalt films. A soft magnetic amorphous Vitrovac foil was used to guide the flux from the samples, which were held at room temperature, to the liquid-nitrogen-cooled SQUID-sensor and back. The flux guide passes through a hole in the 1 mm×2.5 mm pick-up loop of the high-Tc SQUID sensor, thereby providing improved coupling of the magnetic flux from the object to the SQUID. In order to avoid the influence of the SQUID biasing the magnetic field on the object under investigation, a modulation and feedback coil was coupled to the pick-up loop of the SQUID directly and beyond the ferromagnetic flux guide. Such decoupling of feedback coil from soft magnetic flux antenna ensures that the high-Tc SQUID microscope does not disturb the sample magnetization during image recording. The SQUID microscope can be used to measure the spatial distribution of the z-component of the stray field above a specimen without mechanical contact to it.
000825948 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000825948 588__ $$aDataset connected to CrossRef
000825948 7001_ $$0P:(DE-HGF)0$$aKostyurina, E. A.$$b1
000825948 7001_ $$0P:(DE-Juel1)162274$$aDiehle, Patrick$$b2$$ufzj
000825948 7001_ $$0P:(DE-Juel1)130898$$aPoppe, Ulrich$$b3$$ufzj
000825948 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b4$$ufzj
000825948 7001_ $$0P:(DE-HGF)0$$aMaslennikov, Yuri V.$$b5
000825948 7001_ $$0P:(DE-HGF)0$$aKoshelets, Valery P.$$b6
000825948 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7$$ufzj
000825948 773__ $$0PERI:(DE-600)2025387-4$$a10.1109/TASC.2016.2631419$$gVol. 27, no. 4, p. 1 - 5$$n4$$p1600905$$tIEEE transactions on applied superconductivity$$v27$$x1558-2515$$y2017
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.pdf$$yRestricted
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.gif?subformat=icon$$xicon$$yRestricted
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-180$$xicon-180$$yRestricted
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-640$$xicon-640$$yRestricted
000825948 8564_ $$uhttps://juser.fz-juelich.de/record/825948/files/07750627.pdf?subformat=pdfa$$xpdfa$$yRestricted
000825948 909CO $$ooai:juser.fz-juelich.de:825948$$pVDB
000825948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130633$$aForschungszentrum Jülich$$b0$$kFZJ
000825948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162274$$aForschungszentrum Jülich$$b2$$kFZJ
000825948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130898$$aForschungszentrum Jülich$$b3$$kFZJ
000825948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b4$$kFZJ
000825948 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000825948 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000825948 9141_ $$y2017
000825948 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825948 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bIEEE T APPL SUPERCON : 2015
000825948 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000825948 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000825948 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000825948 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825948 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000825948 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825948 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000825948 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000825948 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000825948 920__ $$lyes
000825948 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000825948 980__ $$ajournal
000825948 980__ $$aVDB
000825948 980__ $$aI:(DE-Juel1)PGI-5-20110106
000825948 980__ $$aUNRESTRICTED
000825948 981__ $$aI:(DE-Juel1)ER-C-1-20170209