001     825948
005     20240610120357.0
024 7 _ |a 10.1109/TASC.2016.2631419
|2 doi
024 7 _ |a 1051-8223
|2 ISSN
024 7 _ |a 1558-2515
|2 ISSN
024 7 _ |a WOS:000391318100001
|2 WOS
037 _ _ |a FZJ-2017-00220
082 _ _ |a 530
100 1 _ |a Faley, Michael
|0 P:(DE-Juel1)130633
|b 0
|u fzj
245 _ _ |a Nondestructive Evaluation Using a High-T $_{c}$ SQUID Microscope
260 _ _ |a New York, NY
|c 2017
|b IEEE
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484045215_19267
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We report the application of a scanning high-Tc SQUID (superconducting quantum interference device) microscope with a ferromagnetic flux guide for the nondestructive evaluation of weld seams and wear tracks and scars on austenitic stainless steel plates as well as measurement of magnetic stray fields distribution above patterned by electron lithography 30-nm-thick cobalt films. A soft magnetic amorphous Vitrovac foil was used to guide the flux from the samples, which were held at room temperature, to the liquid-nitrogen-cooled SQUID-sensor and back. The flux guide passes through a hole in the 1 mm×2.5 mm pick-up loop of the high-Tc SQUID sensor, thereby providing improved coupling of the magnetic flux from the object to the SQUID. In order to avoid the influence of the SQUID biasing the magnetic field on the object under investigation, a modulation and feedback coil was coupled to the pick-up loop of the SQUID directly and beyond the ferromagnetic flux guide. Such decoupling of feedback coil from soft magnetic flux antenna ensures that the high-Tc SQUID microscope does not disturb the sample magnetization during image recording. The SQUID microscope can be used to measure the spatial distribution of the z-component of the stray field above a specimen without mechanical contact to it.
536 _ _ |a 144 - Controlling Collective States (POF3-144)
|0 G:(DE-HGF)POF3-144
|c POF3-144
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Kostyurina, E. A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Diehle, Patrick
|0 P:(DE-Juel1)162274
|b 2
|u fzj
700 1 _ |a Poppe, Ulrich
|0 P:(DE-Juel1)130898
|b 3
|u fzj
700 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 4
|u fzj
700 1 _ |a Maslennikov, Yuri V.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Koshelets, Valery P.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 7
|u fzj
773 _ _ |a 10.1109/TASC.2016.2631419
|g Vol. 27, no. 4, p. 1 - 5
|0 PERI:(DE-600)2025387-4
|n 4
|p 1600905
|t IEEE transactions on applied superconductivity
|v 27
|y 2017
|x 1558-2515
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/825948/files/07750627.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:825948
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)130633
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)162274
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)130898
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-144
|2 G:(DE-HGF)POF3-100
|v Controlling Collective States
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b IEEE T APPL SUPERCON : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21