001     825963
005     20240712100906.0
024 7 _ |a 10.5194/acp-17-385-2017
|2 doi
024 7 _ |a 1680-7316
|2 ISSN
024 7 _ |a 1680-7324
|2 ISSN
024 7 _ |a 2128/13408
|2 Handle
024 7 _ |a WOS:000393756100001
|2 WOS
024 7 _ |a altmetric:15352989
|2 altmetric
037 _ _ |a FZJ-2017-00235
082 _ _ |a 550
100 1 _ |a Lennartz, Sinikka T.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Direct oceanic emissions unlikely to account for the missing source of atmospheric carbonyl sulfide
260 _ _ |a Katlenburg-Lindau
|c 2017
|b EGU
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484050899_19272
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The climate active trace-gas carbonyl sulfide (OCS) is the most abundant sulfur gas in the atmosphere. A missing source in its atmospheric budget is currently suggested, resulting from an upward revision of the vegetation sink. Tropical oceanic emissions have been proposed to close the resulting gap in the atmospheric budget. We present a bottom-up approach including (i) new observations of OCS in surface waters of the tropical Atlantic, Pacific and Indian oceans and (ii) a further improved global box model to show that direct OCS emissions are unlikely to account for the missing source. The box model suggests an undersaturation of the surface water with respect to OCS integrated over the entire tropical ocean area and, further, global annual direct emissions of OCS well below that suggested by top-down estimates. In addition, we discuss the potential of indirect emission from CS2 and dimethylsulfide (DMS) to account for the gap in the atmospheric budget. This bottom-up estimate of oceanic emissions has implications for using OCS as a proxy for global terrestrial CO2 uptake, which is currently impeded by the inadequate quantification of atmospheric OCS sources and sinks.
536 _ _ |a 244 - Composition and dynamics of the upper troposphere and middle atmosphere (POF3-244)
|0 G:(DE-HGF)POF3-244
|c POF3-244
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Marandino, Christa A.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a von Hobe, Marc
|0 P:(DE-Juel1)129170
|b 2
|u fzj
700 1 _ |a Cortes, Pau
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Quack, Birgit
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Simo, Rafel
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Booge, Dennis
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Pozzer, Andrea
|0 0000-0003-2440-6104
|b 7
700 1 _ |a Steinhoff, Tobias
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Arevalo-Martinez, Damian L.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Kloss, Corinna
|0 P:(DE-Juel1)161426
|b 10
|u fzj
700 1 _ |a Bracher, Astrid
|0 0000-0003-3025-5517
|b 11
700 1 _ |a Röttgers, Rüdiger
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Atlas, Elliot
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Krüger, Kirstin
|0 P:(DE-HGF)0
|b 14
773 _ _ |a 10.5194/acp-17-385-2017
|g Vol. 17, no. 1, p. 385 - 402
|0 PERI:(DE-600)2069847-1
|n 1
|p 385 - 402
|t Atmospheric chemistry and physics
|v 17
|y 2017
|x 1680-7324
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/825963/files/acp-17-385-2017.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:825963
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129170
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 10
|6 P:(DE-Juel1)161426
913 1 _ |a DE-HGF
|l Atmosphäre und Klima
|1 G:(DE-HGF)POF3-240
|0 G:(DE-HGF)POF3-244
|2 G:(DE-HGF)POF3-200
|v Composition and dynamics of the upper troposphere and middle atmosphere
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a Creative Commons Attribution CC BY 3.0
|0 LIC:(DE-HGF)CCBY3
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ATMOS CHEM PHYS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-7-20101013
|k IEK-7
|l Stratosphäre
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-7-20101013
981 _ _ |a I:(DE-Juel1)ICE-4-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21