
Atmos. Chem. Phys., 17, 385–402, 2017

www.atmos-chem-phys.net/17/385/2017/

doi:10.5194/acp-17-385-2017

© Author(s) 2017. CC Attribution 3.0 License.

Direct oceanic emissions unlikely to account for the missing source

of atmospheric carbonyl sulfide

Sinikka T. Lennartz1, Christa A. Marandino1, Marc von Hobe2, Pau Cortes3, Birgit Quack1, Rafel Simo3,

Dennis Booge1, Andrea Pozzer4, Tobias Steinhoff1, Damian L. Arevalo-Martinez1, Corinna Kloss2, Astrid Bracher5,6,

Rüdiger Röttgers7, Elliot Atlas8, and Kirstin Krüger9

1GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
2Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research (IEK-7), Wilhelm-Johnen-Strasse,

52425 Jülich, Germany
3Institut de Ciencies del Mar, CSIC, Pg. Maritim de la Barceloneta, 37-49, 08003 Barcelona, Catalonia, Spain
4Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128 Mainz, Germany
5Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bussestrasse 24, 27570 Bremerhaven, Germany
6Institute of Environmental Physics, University of Bremen, 28334 Bremen, Germany
7Helmholtz-Zentrum Geesthacht, 21502 Geesthacht, Germany
8Rosenstiel School of Marine and Atmospheric Science, Miami, FL 33149, USA
9University of Oslo, Department of Geosciences, 0315 Oslo, Norway

Correspondence to: Sinikka T. Lennartz (slennartz@geomar.de)

Received: 29 August 2016 – Published in Atmos. Chem. Phys. Discuss.: 12 September 2016

Revised: 22 November 2016 – Accepted: 6 December 2016 – Published: 10 January 2017

Abstract. The climate active trace-gas carbonyl sulfide

(OCS) is the most abundant sulfur gas in the atmosphere.

A missing source in its atmospheric budget is currently sug-

gested, resulting from an upward revision of the vegetation

sink. Tropical oceanic emissions have been proposed to close

the resulting gap in the atmospheric budget. We present a

bottom-up approach including (i) new observations of OCS

in surface waters of the tropical Atlantic, Pacific and Indian

oceans and (ii) a further improved global box model to show

that direct OCS emissions are unlikely to account for the

missing source. The box model suggests an undersaturation

of the surface water with respect to OCS integrated over the

entire tropical ocean area and, further, global annual direct

emissions of OCS well below that suggested by top-down es-

timates. In addition, we discuss the potential of indirect emis-

sion from CS2 and dimethylsulfide (DMS) to account for the

gap in the atmospheric budget. This bottom-up estimate of

oceanic emissions has implications for using OCS as a proxy

for global terrestrial CO2 uptake, which is currently impeded

by the inadequate quantification of atmospheric OCS sources

and sinks.

1 Introduction

Carbonyl sulfide (OCS) is the most abundant reduced sul-

fur compound in the atmosphere. It enters the atmosphere ei-

ther by direct emissions, e.g., from oceans, wetlands, anoxic

soils or anthropogenic emissions, or indirectly via oxidation

of the short-lived precursor gases dimethylsulfide (DMS) and

carbon disulfide (CS2) (Chin and Davis, 1993; Watts, 2000;

Kettle, 2002). Both precursor gases are naturally produced in

the oceans, and CS2 has an additional anthropogenic source

(Kettle, 2002; Stefels et al., 2007; Campbell et al., 2015).

With direct and indirect marine emissions combined, the

ocean is considered as the dominant source of atmospheric

OCS (Chin and Davis, 1993; Watts, 2000; Kettle, 2002). The

most important sink of atmospheric OCS is uptake by ter-

restrial vegetation (Brown and Bell, 1986; Protoschill-Krebs

and Kesselmeier, 1992; Campbell et al., 2008) and oxic soils,

while chemical loss by photolysis and reaction with the hy-

droxyl radical (OH) in the atmosphere are minor loss pro-

cesses (Chin and Davis, 1993; Watts, 2000; Kettle, 2002).

While tropospheric volume mixing ratios show a distinct an-

nual cycle (Montzka et al., 2007), the interannual to decadal

variation is low (Montzka et al., 2007; Kremser et al., 2015).
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Table 1. Missing source estimates derived from top-down ap-

proaches: the listed studies used an increased vegetation sink and an

a priori direct and indirect ocean flux to estimate the magnitude of

the missing source. Assigning the missing source to oceanic emis-

sions results in the total ocean flux listed here. Fluxes are given in

Gg S per year.

A priori Missing Total

Reference ocean source ocean

flux flux

Suntharalingam et al. (2008) 235 230 465

Berry et al. (2013) 276 600 876

Kuai et al. (2015) 289 800 1089

Glatthor et al. (2015) 276 714 992

Accurate accounts of sources and sinks of atmospheric

OCS are crucial for two reasons.

– First, OCS is climate-relevant because it influences the

radiative budget of the Earth as a greenhouse gas and by

contributing significant amounts of sulfur to the strato-

spheric aerosol layer (Crutzen, 1976; Brühl et al., 2012;

Notholt et al., 2003; Turco et al., 1980) that exerts a

cooling effect (Turco et al., 1980; Kremser et al., 2016).

The two opposite effects are currently in balance (Brühl

et al., 2012), but future changes in atmospheric circula-

tion, as well as the magnitude and distribution of OCS

sources and sinks, could change that. Hence, a better

understanding of the tropospheric budget is needed to

predict the effect of OCS in future climate scenarios

(Kremser et al., 2016).

– Second, OCS has recently been suggested as a promis-

ing tool to constrain terrestrial CO2 uptake, i.e., gross

primary production (GPP), as it is taken up by plants in

a similar way as CO2 (Asaf et al., 2013). GPP, a ma-

jor global CO2 flux, can only be inferred from indirect

methods, because the uptake of CO2 occurs along with

a concurrent release by respiration. Unlike CO2, OCS is

irreversibly degraded within the leaf. GPP can thus be

estimated based on the uptake ratio of OCS and CO2,

from the leaf to regional scale (Asaf et al., 2013) or

even global scale (Beer et al., 2010), under the condition

that other sources are negligible or well quantified. The

magnitude of terrestrial biogeochemical feedbacks on

climate has been suggested to be similar to that of phys-

ical feedbacks (Arneth et al., 2010). In order to reduce

existing uncertainties, it is thus crucial to better con-

strain single processes in the carbon cycle, especially

GPP.

Nonetheless, current figures for tropospheric OCS sources

and sinks carry large uncertainties (Kremser et al., 2016).

While the budget has been previously considered closed

(Kettle, 2002), a recent upward revision of the vegetation

sink (Sandoval-Soto et al., 2005; Suntharalingam et al., 2008;

Berry et al., 2013) led to a gap, i.e., a missing source in the at-

mospheric budget of 230–800 Gg S per year (Suntharalingam

et al., 2008; Berry et al., 2013; Kuai et al., 2015; Glatthor

et al., 2015) (Table 1), with the most recent estimates at the

higher end of the range. This revision of vegetation uptake

was suggested to (i) take into account the different deposi-

tion velocities of CO2 and OCS within the leaf and base it on

GPP instead of net primary production (Sandoval-Soto et al.,

2005) as well as (ii) to better reproduce observed seasonality

of OCS mixing ratios in several atmospheric models (Berry

et al., 2013; Kuai et al., 2015; Glatthor et al., 2015). Based

on independent top-down approaches using MIPAS (Glatthor

et al., 2015) and TES (Kuai et al., 2015) satellite observa-

tions, FTIR measurements (Wang et al., 2016), and NOAA

ground-based time series stations and the HIPPO aircraft

campaign (Berry et al., 2013; Kuai et al., 2015), the missing

source of OCS was suggested to originate from the (tropi-

cal) ocean, most likely from the region of the Pacific warm

pool. Other potential sources such as advection of air masses

from Asia have been discussed (Glatthor et al., 2015) but not

tested. If the ocean was to account for the missing source, the

total top-down oceanic source strength would then be the a

priori oceanic flux plus the missing source estimate of each

inverse model simulation (Table 1). This addition would im-

ply a 200–380 % increase in the a priori estimated oceanic

source. If oceanic direct and indirect emissions were to ac-

count for the total missing source, an ocean source strength

of 465–1089 Gg S yr−1 would be required (Table 1).

OCS and its atmospheric precursors are naturally pro-

duced in the ocean. In the surface open ocean, OCS is present

in the lower picomolar range, and has been measured on nu-

merous cruises in the Atlantic (Ulshöfer et al., 1995; Flöck

and Andreae, 1996; Ulshöfer and Andreae, 1998; von Hobe

et al., 1999), including three latitudinal transects (Kettle

et al., 2001; Xu et al., 2001), the Indian Ocean (Mihalopou-

los et al., 1992), the Pacific Ocean (Weiss et al., 1995a) and

the Southern Ocean (Staubes and Georgii, 1993). Measure-

ments in tropical latitudes, where the missing source is as-

sumed to be located, have previously been performed in the

Indian Ocean (Mihalopoulos et al., 1992) and during the At-

lantic transects (Kettle et al., 2001; Xu et al., 2001). OCS

is produced photochemically from chromophoric dissolved

organic matter (CDOM) (Andreae and Ferek, 2002; Ferek

and Andreae, 1984) and by a not fully understood light-

independent production that has been suggested to be linked

to radical formation (Flöck et al., 1997; Pos et al., 1998).

Dissolved OCS is efficiently hydrolyzed to CO2 and H2S at

a rate depending on pH and temperature (Elliott et al., 1989).

CS2 has been measured in the Pacific and Atlantic oceans

in a range of 7.2–27.5 pmol L−1 (Xie et al., 1998) and dur-

ing two Atlantic transects (summer and winter) in a range of

4–40 pmol L−1 (Xu, 2001). It is produced photochemically

(Xie et al., 1998) and biologically (Xie et al., 1999), and no

significant loss process other than air–sea gas exchange has
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Table 2. Global oceanic emission estimates of OCS: direct ocean

emission estimates of OCS from bottom-up approaches. Uncertain-

ties are given in parentheses as in the original paper either as range

or ± standard deviation.

Reference Emitted S as OCS

(Gg S yr−1)

Extrapolated from measurements

Rasmussen et al. (1982) 320 (±160)∗

Ferek and Andreae (1983) 245∗

Johnson and Harrison (1986) 110–210∗

Mihalopoulos et al. (1992) 230 (110–210)∗

Chin and Davis (1993) 160 (85–340)∗

Weiss et al. (1995b) −16 (−10–30)∗

Ulshöfer and Andreae (1998) 41–80∗

Watts (2000) 53 (±80)∗

Xu et al. (2001) 53∗

Model simulations

Kettle (2002) 41 (±154)

Launois et al. (2015a) 813 (573–3997)

This study 130 (±80)

∗ Units deviate from original paper, converted to Gg S for comparison.

been identified (Xie et al., 1998). DMS is present in the lower

nanomolar range in the surface ocean and has been exten-

sively studied in several campaigns, summarized in a clima-

tology by Lana et al. (2011). DMS is biogenically produced

and consumed in the surface ocean, as well as photo-oxidized

and ventilated by air–sea exchange (Stefels et al., 2007).

Available bottom-up estimates of the global oceanic OCS

fluxes from shipboard observations range from −16 to

320 Gg S yr−1 (Table 2). However, the highest estimates were

biased, because mainly summertime and daytime observa-

tions of water concentrations were considered. With the dis-

covery of the seasonal oceanic sink of OCS during winter-

time (Ulshöfer et al., 1995) and a pronounced diel cycle

(Ferek and Andreae, 1984), direct oceanic emissions were

corrected downwards.

Only recently, OCS emissions have been estimated with

the biogeochemical ocean model NEMO-PISCES (Launois

et al., 2015a) at a magnitude of 813 Gg S yr−1, sufficient to

account for the missing source. This oceanic emission in-

ventory had been used to constrain GPP based on OCS on

a global scale (Launois et al., 2015b). However, the oceanic

OCS photoproduction in the ocean model included a param-

eterization for OCS photoproduction derived from an exper-

iment in the North Sea (Uher and Andreae, 1997b), which

might not be representative for the global ocean, as indicated

by photoproduction constants that were an order of magni-

tude lower in the Atlantic ocean compared to the German

Bight (Uher and Andreae, 1997a).

Here, we present new observations in all three tropical

ocean basins, two of them measured with unprecedented pre-

cision and time resolution. Direct fluxes were inferred from

continuous OCS measurements in the tropical Pacific and

Indian oceans, covering a range of regimes with respect to

CDOM content, ultraviolet (UV) radiation and sea surface

temperature (SST). These observations are used to further

constrain and validate a biogeochemical box model which

had previously been shown to reproduce OCS concentra-

tion in the Atlantic Ocean reasonably well (von Hobe et al.,

2001). The box model is now updated from its previous

global application (Kettle, 2002) by adding and further de-

veloping the most recent process parameterizations to esti-

mate the global source strength of direct OCS emissions. The

emission estimate is further complemented by discussing the

potential of indirect OCS emissions, i.e., the emissions of

short-lived precursor gases CS2 and DMS, to account for the

gap in the budget.

2 Methods

2.1 Study sites

Several cruises were conducted to measure the trace gases

OCS (OASIS, TransPEGASO, ASTRA-OMZ) and CS2

(TransPEGASO, ASTRA-OMZ). Cruise tracks are depicted

in Fig. 1. The OASIS cruise onboard RV SONNE I to the In-

dian Ocean started from Port Louis, Mauritius, to Malé, Mal-

dives, in July and August 2014, where mainly oligotrophic

waters were encountered. TransPEGASO was an Atlantic

transect starting in Gibraltar and leading to Buenos Aires,

Argentina, and Punta Arenas, Chile. It took place in October

and November 2014 and covered a variety of biogeochemi-

cal regimes. ASTRA-OMZ onboard RV SONNE II started in

Guayaquil, Ecuador, and ended in Antofagasta, Chile, in Oc-

tober 2015. Although 2015 was an El Niño year, upwelling

together with high biological production was still encoun-

tered during the cruise (Stramma et al., 2016).

2.2 Measurement setup for trace gases

OCS was measured during two cruises onboard the RV

SONNE I (OASIS) and SONNE II (ASTRA-OMZ) with a

continuous underway system similar to the one described

in Arévalo-Marténez et al. (2013), at a measurement fre-

quency of 1 Hz. The system consisted of a Weiss-type

equilibrator, through which seawater is pumped from ap-

proximately 5 m below the surface with a flow of 3–

4 L min−1. The air from the equilibrator headspace was

Nafion-dried and continuously pumped into an OCS ana-

lyzer (model DL-T-100, Los Gatos Research) that uses the

off-axis integrated cavity output spectroscopy (OA-ICOS)

technique. The instrument used onboard is a prototype

of a commercial instrument (www.lgrinc.com/documents/

OCS_Analyzer_Datasheet.pdf), developed by Los Gatos

Research (LGR) in collaboration with Forschungszentrum

Jülich GmbH (Schrade, 2011). Data were averaged over

www.atmos-chem-phys.net/17/385/2017/ Atmos. Chem. Phys., 17, 385–402, 2017
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Figure 1. Observed OCS water concentrations and calculated emissions: observations of OCS concentrations in the surface ocean during

the three cruises (a) OASIS, (b) ASTRA-OMZ, and (c) TransPEGASO as well as the corresponding emissions calculated based on the

concentration gradient between water and marine boundary layer (d–f). Outgassing is indicated in red bars; oceanic uptake in blue bars. The

grey line shows wind speed measured onboard the vessels. Flux data are shown with different scales on the y axes. Data gaps occurred during

stays in port and territorial waters or during instrument tests.

2 min, achieving a precision of 15 ppt. OCS mixing ratios in

the marine boundary layer (MBL) were determined by pump-

ing outside air ca. 50 m from the ship’s deck to the OCS an-

alyzer (KNF Neuberger pump). A measurement cycle con-

sisted of 50 min water sampling and 10 min air sampling,

where the first 3 min after switching until stabilization of the

signal were discarded.

Before and after the cruise the analyzer was calibrated over

a range of concentrations using permeation devices. Both

calibrations were consistent. However, during calibration the

output of the internal spectral retrieval differed significantly

from post-processing of the recorded spectra, which matched

the known concentrations (this offset is not present in the

commercial instruments). The calibration data were thus

used to derive a correction function. After correction all data

stayed within 5 % of the standards. The calibration scale of

the permeation devices was 5 % below the NOAA scale. As

the OCS analyzer measured CO2 simultaneously, and CO2

standards were available during the cruise, drift of the instru-

ment was tested by measuring CO2 standard gases before and

after the cruise and found to be less than 1 % of the signal.

Special care was taken to avoid contamination, and all mate-

rials used were tested for contamination before use.

During OASIS, the mirrors inside the cavity of the OCS

analyzer were not completely clean, which led to a reduced

signal. To correct the data, an attenuation factor was deter-

mined from simultaneous CO2 measurements, because no

OCS standard was available onboard, and OASIS data were

corrected accordingly.

An independent quality check of the data was performed

by comparing volume mixing ratios of the MBL from the

OCS analyzer with samples from air canisters sampled dur-

ing both cruises and measured independently (Schauffler

et al., 1998; de Gouw et al., 2009). The calibrated (and at-

Atmos. Chem. Phys., 17, 385–402, 2017 www.atmos-chem-phys.net/17/385/2017/
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tenuation corrected for OASIS) OA-ICOS data were on av-

erage 5 % lower than the air canister samples, which reflects

the 5 % difference between the calibration at Forschungszen-

trum Jülich and the NOAA scale.

During ASTRA-OMZ, CS2 was directly measured on-

board within 1 h of collection using a purge and trap sys-

tem attached to a gas chromatograph and mass spectrome-

ter (GC/MS; Agilent 7890A/Agilent 5975C; inert XL MSD

with triple axis detector) running in single-ion mode. The

discrete surface seawater samples (50 mL) were taken each

hour to every 3 h from the same pump system as for contin-

uous OCS measurements. CS2 was stripped by purging with

helium (70 mL min−1) for 15 min. The gas stream was dried

using a Nafion membrane dryer (Perma Pure) and CS2 was

preconcentrated in a trap cooled with liquid nitrogen. After

heating the trap with hot water, CS2 was injected into the

GC/MS. Retention time for CS2 (m/z 76, 78) was 4.9 min.

The analyzed data were calibrated each day using gravimet-

rically prepared liquid CS2 standards in ethylene glycol. Dur-

ing purging, 500 µL gaseous deuterated DMS (d3-DMS) and

isoprene (d5-isoprene) were added to each sample as an inter-

nal standard to account for possible sensitivity drift between

calibrations.

During the TransPEGASO cruise onboard RV Hesperides,

surface ocean OCS and CS2 were measured in discrete sea-

water samples by purge and trap and gas chromatography

with mass spectrometry detection (GC-MSD). Samples were

collected every day at 09:00 and 15:00 local time in glass

bottles without headspace and analyzed within 1 h. Aliquots

of 25 mL were withdrawn with a glass syringe and filtered

through GF/F during injection into the purge and trap system

(Stratum, Teledyne Tekmar). The water was heated to 30 ◦C

and volatiles were stripped by bubbling with 40 mL min−1 of

ultrapure helium for 12 min and trapped in a U-shaped VO-

CARB 9 trap at room temperature. After flash thermal des-

orption, volatiles were injected into an Agilent 5975T LTM

GC-MSD equipped with an Agilent LTM DB-VRX column

(20 m × 0.18 mm OD × 1 µm) maintained at 30 ◦C. Reten-

tion times for OCS (m/z 60) and CS2 (m/z 76) were 1.3 and

2.7 min, respectively. Peak quantification was achieved with

respect to gaseous (OCS in N2) and liquid (CS2 in methanol

and water) standards that were analyzed in the same way.

Samples were run in duplicates. Detection limits were 1.8 pM

(OCS) and 1.4 pM (CS2), and precision was typically around

5 %.

The systems are each calibrated against a standard, but

they had not been directly intercompared. Still, our measure-

ments are consistent with previous measurements using in-

dependent methods as discussed in Sects. 3.2.1 and 3.3.

2.3 Calculation of air–sea exchange

Fluxes F of all gases were calculated with Eq. (1):

F = kw · 1C, (1)

where kw is the gas transfer velocity in water (i.e., physical

constraints on exchange) and 1C the air–sea concentration

gradient (i.e., the chemical constraint on exchange). The air-

side transfer velocity (Liss and Slater, 1974) for OCS was

calculated to be 7 orders of magnitude smaller and was there-

fore neglected. The concentration gradient was determined

using the temperature dependent Henry constant (De Bruyn

et al., 1995) and the measurements in the surface water and

MBL for OASIS and ASTRA-OMZ. During TransPEGASO,

no atmospheric volume mixing ratio was measured, and a

value of 500 ppt was assumed (Montzka et al., 2007). As

air volume mixing ratios of OCS vary over the course of a

year, we performed a sensitivity test for a scenario of 450

and 550 ppt and found mean deviations of +7.8 and −7.8 %,

respectively. The transfer velocity kw was determined using a

quadratic parameterization based on wind speed (Nightingale

et al., 2000) which was directly measured onboard (10 min

averages). Furthermore, kw was corrected for OCS and CS2

by scaling it with the Schmidt number calculated from the

molar volume of the gases (Hayduk and Laudie, 1974). It

should be noted that the choice of the parameterization for

kw has a non-negligible influence on the global emission esti-

mate. Linear, quadratic and cubic parameterizations of kw are

available, with differences increasing at high wind speeds on

the order of a factor of 2 (Lennartz et al., 2015; Wanninkhof

et al., 2009). Evidence suggests that the air–sea exchange of

insoluble gases such as CO2, OCS and CS2 follows a cu-

bic relationship to wind speed because of bubble-mediated

gas transfer (McGillis et al., 2001; Asher and Wanninkhof,

1998). However, this difference between soluble and non-

soluble gases is not always consistent (Miller et al., 2009),

and too few data are available for a reliable parameterization

at high wind speeds above 12 m s−1, where the cubic and the

quadratic parameterizations diverge the most. For reasons of

consistency, e.g., for the fitted photoproduction p from pre-

vious studies, and the fact that most of the previous emission

estimates were computed using a quadratic kw parameteri-

zation, we chose the same quadratic parameterization repre-

senting the mean range of observations (Nightingale et al.,

2000). For a sensitivity test, we computed the global oceanic

emission with a cubic relationship (McGillis et al., 2001),

which results in an additional 40 Gg S per year as direct

OCS emissions, leaving the missing source still unexplained.

However, better constraints on the transfer velocity of insol-

uble gases would decrease the uncertainty in global oceanic

emissions of marine trace gases.

www.atmos-chem-phys.net/17/385/2017/ Atmos. Chem. Phys., 17, 385–402, 2017
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2.4 Box model of OCS concentration in the surface

ocean

A box model to simulate surface concentration of OCS is

further developed from the latest version from von Hobe

et al. (2003, termed vH2003), where concentrations along the

tracks of five Atlantic cruises have been simulated and com-

pared. The vH2003 model results from successful tests and

validation to observations on several cruises to the Atlantic

Ocean covering all seasons (i.e., Flöck and Andreae, 1996,

in January 1994; Uher and Andreae, 1997a, in April/May

1992; von Hobe et al., 1999, in June/July 1997; Kettle et al.,

2001, in September/October 1998). By comparing photopro-

duction rate constants of the five cruises to CDOM absorp-

tion, von Hobe et al. (2003) suggest a second-order process

for photoproduction with the photoproduction rate constant

being dependent on the absorption of CDOM in seawater.

In our approach, we test vH2003 along the cruise track

of two cruises, include a new way of determining the pho-

toproduction rate constant (see below) and apply it with

global climatological input (termed L2016). Kettle (2000,

2002, termed K2000) applied a similar version of vH2003

globally, which included an optimized photoproduction con-

stant from Atlantic transect cruise data, an optimized con-

stant light-independent production and a linear regression to

obtain CDOM from chlorophyll a. In comparison to K2000,

we use (i) a new way of determining the photoproduction rate

constant incorporating information from three ocean basins,

(ii) the most recent parameterization of light-independent

production available, and (iii) satellite observations for sea

surface CDOM instead of an empirical relationship based on

chlorophyll a.

Launois et al. (2015a) implemented parameterizations

for light-independent production, hydrolysis and air–sea ex-

change similar to vH2003 in the 3-D global ocean model

NEMO-PISCES. The main differences to the approach used

here are the lack of accounting for mixing in L2016 (dis-

cussed in Sect. 3.2.2, which will theoretically lead to higher

simulated concentrations in our case) and the application of a

photoproduction rate constant in our model that incorporates

information from three open ocean basins in contrast to one

from a study in the North Sea (Launois et al., 2015a).

In L2016, the light-independent production term of OCS

was parameterized depending on SST (K) and the absorption

coefficient of CDOM at 350 nm wavelength, a350 (von Hobe

et al., 2001) (Eq. 2).

dCOCS

dt
= a350 × 10−6 × exp

(

55.8 −
16 200

SST

)

(2)

An overview on symbols and abbreviations used in equations

in the following is provided in the Appendix. The parameter-

ization for hydrolysis describes alkaline and acidic degrada-

tion of OCS by Reactions (R1) and (R2):

OCS + H2O → H2S + CO2, (R1)

OCS + OH− → SH− + CO2. (R2)

It was parameterized as a first-order kinetic reaction includ-

ing the rate constant kh according to Eqs. (3)–(5):

dCOCS

dt
= [OCS] · kh, (3)

kh = exp

(

24.3 −
10 450

SST

)

+ exp

(

22.8 −
6040

SST

)

·
K

a[H+]
,

(4)

− log10K =
3046.7

SST
+ 3.7685 + 0.0035486 ·

√
SSS, (5)

where a[H+] is the proton activity and K the ion product of

seawater (Dickinson and Riley, 1979).

Fluxes were calculated with Eq. (1) using the same pa-

rameterization for kw as for the emission calculation from

measurements described above.

Photoproduction was integrated over the mixed layer

depth (MLD), assuming a constant concentration of OCS and

CDOM throughout the mixed layer, with the photoproduc-

tion rate constant p (mol J−1), a350 (m−1) and UV radiation

(W m−2) (Sikorski and Zika, 1993) (Eq. 6).

dCOCS

dt
=

0
∫

−MLD

pa350UVdz (6)

MLD was obtained from CTD (conductivity, temperature,

depth) profiles and interpolated between these locations

(Figs. S1, S2 in the Supplement). The photochemically active

radiation that reaches the ocean surface was approximated by

Eq. (7) (Najjar et al., 1995):

UV = 2.85 × 10−4 · I · cos2θ, (7)

with global radiation I (W m−2) and the zenith angle cos θ .

The attenuated UV light intensity directly below the surface

(Sikorski and Zika, 1993) down to the respective depth of the

mixed layer was calculated in 1 m steps, taking into account

attenuation by CDOM and pure seawater. As a simplification

in this global approach, the box model did not resolve the

whole wavelength spectrum, but rather used a350 and applied

a photoproduction rate constant that takes into account the

integrated spectrum. A similar approach had been tested and

compared to a wavelength spectrum resolving version by von

Hobe et al. (2003).

The rate coefficients for hydrolysis, light-independent pro-

duction and air–sea exchange are all reasonably well con-

strained and parameterizations have been derived from ded-

icated laboratory and field experiments (hydrolysis, air–

sea exchange) or from nighttime OCS observations in

several regions assuming steady state (dark production;
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Figure 2. Box model simulations compared to observations: comparison of simulated OCS water concentrations against measurements

from the OASIS cruise to the Indian Ocean (a) and the eastern Pacific Ocean during the ASTRA-OMZ cruise (b). Blue indicates OCS

concentrations with a least-squares fit for the photoproduction rate constant p during daylight, fitted individually for days with homogeneous

water masses (SST, a350). Black shows the simulation including the p depending on a350, obtained from linear regression of individually

fitted p with a350 (r = 0.71). The time on the x axis is local time (GMT+5 during OASIS 2014, GMT−4 during ASTRA-OMZ 2015).
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Figure 3. Dependence of photoproduction rate constant p on a350

including own fits for p (resulting in blue lines in Fig. 2) and fits

from a similar study (von Hobe et al., 2003). Dashed lines indicate

the 95 % confidence interval.

von Hobe et al., 2001). However, the photoproduction rate

constant p is not well constrained and no generally applica-

ble parameterization exists. In the study of von Hobe et al.

(2003), a start was made in parameterizing p in terms of

CDOM absorption, and they found this to be dependent on

the exact model setup used with respect to wavelength inte-

gration and mixed layer treatment. To extend the p–CDOM

relationship for other ocean basins, we use the two cruises

OASIS and ASTRA-OMZ as case studies for parameter op-

timization of the photoproduction rate constant p. The pho-

toproduction constant p in the case study simulations was fit-

ted individually for periods of daylight > 100 W m−2 (Fig. 2,

blue lines) with a Levenberg–Marquardt optimization rou-

tine in MatLab version 2015a (8.5.0) by minimizing resid-

uals between simulated and hourly averaged measurements.

Different starting values were tested to reduce the risk of the

fitted p being a local minimum. Together with photoproduc-

tion rate constants obtained by a similar optimization pro-

cedure by von Hobe et al. (2003) (Table 2 therein, termed

MLB STC), a relationship of the photoproduction constant

p dependent on a350 was established (Fig. 3). The resulting

linear relationship thus includes values from the Atlantic, Pa-

cific and Indian oceans, making it a good approximation for
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a globally valid dependence. For the global box model, p

was calculated in every time step based on this relationship

(r = 0.71, Eq. 8):

p = 3591.3 · a350 + 329.4 (8)

The scatter in Fig. 3 likely reflects the inhomogeneity of the

water masses across the three oceanic basins considered, as

CDOM absorbance is a valid proxy, but carries some uncer-

tainty in the concentration of the actual precursor.

The model input for simulations of the cruises OASIS

and ASTRA-OMZ consisted of measurements made during

the respective cruise, including SST and SSS (MicroCAT

SBE41) measured every minute, CDOM absorption coeffi-

cient (spectrophotometrically measured ca. every 3 h with a

liquid capillary cell setup) and the ship’s in situ measured

meteorological data such as wind speed and global radiation

averaged over 10 min (Figs. S1, S2, Tables S1, S2). Forcing

data were linearly interpolated to the time step of integration

of 2 min.

For the global box model, monthly global meteorological

fields with a spatial resolution of 2.8◦ × 2.8◦ were used (Ta-

ble S3, Fig. S3). For global a350 at the sea surface, monthly

climatological means for absorption due to gelbstoff and de-

tritus a443 (gelbstoff representing CDOM) from the MODIS-

Aqua satellite (all available data, 2002–2014) (NASA, 2014)

were corrected to 350 nm with Eq. (9) (Fichot and Miller,

2010; Launois et al., 2015a):

a350 = a443 · exp(−0.02 · (350 − 443)). (9)

SST, wind speed, and atmospheric pressure were obtained

as monthly climatological means from the same period, i.e.,

2002 to 2014, by ERA-Interim (Dee et al., 2011). A diel cy-

cle of global radiation I was obtained by fitting the para-

ble parameters a and b during time of the day t in Eq. (10)

(Fig. S4),

I = −a · t2 + b, (10)

to conditions of (i) x axis interceptions in the distance of the

sunshine duration and (ii) the integral being the daily incom-

ing energy by ERA-Interim (Dee et al., 2011). Monthly cli-

matologies of mixed layer depths were used from the MI-

MOC project (Schmidtko et al., 2013). For details of data

sources please refer to Tables S1–S3 provided in the Supple-

ment. The time step of the model was set to 120 min, which

had been tested to result in negligible (< 3 %) smoothing.

2.5 Assessing the indirect contribution of DMS with

EMAC

Model outputs from ECHAM/MESSy Atmospheric Chem-

istry (EMAC) from the simulation RC1SDbase-10a of the

ESCiMo project (Jöckel et al., 2016) are used to evaluate

the contribution of DMS on the production of OCS. The

model results were obtained with ECHAM5 version 5.3.02

and MESSy version 2.51, with a T42L90MA resolution (cor-

responding to a quadratic Gaussian grid of approx. 2.8 by

2.8◦ in latitude and longitude and 90 vertical hybrid pressure

levels up to 0.01 hPa). The dynamics of the general circula-

tion model were nudged by Newtonian relaxation towards

ERA-Interim reanalysis data. DMS emissions were calcu-

lated with the AIRSEA submodel (Pozzer et al., 2006), which

takes into account concentration of DMS in the atmosphere

and in the ocean, following a two-layer conceptual model

to calculate emissions (Liss and Slater, 1974). While atmo-

spheric concentrations are estimated online by the model

(with DMS oxidation), the oceanic concentrations are pre-

scribed as monthly climatologies (Lana et al., 2011). It was

shown that such an online calculation of emissions provides

the most realistic results when compared to measurements

compared to a fixed emission rate (Lennartz et al., 2015). The

online-calculated concentrations of DMS and OH were been

used to estimate the production of OCS. A production yield

of 0.7 % was used for the reaction of DMS with OH (Barnes

et al., 1994), using the reaction rate constant suggested by the

International Union of Pure and Applied Chemistry (IUPAC)

(Atkinson et al., 2004).

3 Results and discussion

3.1 Observations of OCS in the tropical ocean

OCS was measured in the surface ocean and MBL during

three cruises in the tropics. Measurement locations (Fig. 1)

include oligotrophic open ocean regions in the Indian Ocean

(OASIS, 07-08/2014), open ocean and shelf areas in the

eastern Pacific (ASTRA-OMZ, 10/2015) and a meridional

transect in the Atlantic (TransPEGASO, 10-11/2014). In the

Indian and Pacific oceans, continuous underway measure-

ments provided the necessary temporal resolution to observe

diel cycles of OCS concentrations in surface water. Dis-

solved OCS concentrations exhibited diel cycles with max-

ima 2 to 4 h after local noon (Fig. 1), which are a conse-

quence of photochemical production and removal by hydrol-

ysis (Uher and Andreae, 1997a). OCS concentrations also

varied spatially. Taking a350 as a proxy for CDOM con-

tent, we found that daily mean OCS concentrations were

higher in CDOM-rich (Table 3, 28.3 ± 19.7 pmol OCS L−1,

a350: 0.15 ± 0.03 m−1) than in CDOM-poor waters (Table 3,

OASIS: 9.1±3.5 pmol OCS L−1, a350: 0.03 ± 0.02 m−1).

Samples during TransPEGASO were measured with gas

chromatography–mass spectrometry twice a day (around

08:00–10:00 and 15:00–17:00 local times). Therefore, the

full diel cycles could not be reconstructed and potential vari-

ations of OCS with CDOM absorption were overlaid by diel

variations. Nevertheless, the observed range of OCS con-

centrations in the Atlantic corresponds well to the observa-

tions from the eastern Pacific and Indian Ocean (Table 3)

and is consistent with measurements from a previous Atlantic
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Table 3. Average, standard deviation and range of parameters observed during the cruises OASIS (Indian Ocean, 2014), ASTRA-OMZ

(Pacific Ocean, 2015) and TransPEGASO (Atlantic Ocean, 2014).

Average (±SD) Minimum Maximum

OASIS (Indian Ocean)

OCS sea surface concentration (pmol L−1) 9.1 (±3.5) 5.1 20.7

OCS flux (g S d−1 km−2) −0.25 (±0.5) −1.6 1.5

SST (◦C) 27.0 (±1.4) 22.2 32.0

Salinity (–) 34.9 (±0.3) 34.3 35.4

Wind speed (m s−1) 7.6 (±2.1) 0.2 14.5

aCDOM(350) (m−1) 0.03 (±0.02) n.d. 0.12

ASTRA-OMZ (Pacific Ocean)

OCS sea surface concentration (pmol L−1) 28.3 (±19.7) 6.5 133.8

OCS flux (g S d−1 km−2) 1.5 (±2.1) −1.5 19.9

CS2 sea surface concentration (pmol L−1) 17.8 (±8.9) 6.7 40.1

CS2 flux (g S d−1 km−2) 4.1 (±3.2) 0.2 14.4

SST (◦C) 20.1 (±2.9) 15.6 26.9

Salinity (–) 35.0 (±0.43) 33.4 35.5

Wind speed (m s−1) 7.4 (±2.0) 0.3 15.5

aCDOM(350) (m−1) 0.15 (±0.03) 0.1 0.24

TransPEGASO (Atlantic Ocean)

OCS sea surface concentration (pmol L−1) 23.6 (±19.3) 2.6 78.3

OCS flux (g S d−1) 1.3 (±3.5) −1.7 14.0

CS2 sea surface concentration (pmol L−1) 62.5 (±42.1) 23.2 154.8

CS2 flux (g S d−1 km−2) 13.7 (±9.8) 0.3 33.9

SST (◦C) 22.6 (±6.3) 7.1 29.6

Salinity (–) 34.9 (±2.6) 28.4 38.1

Wind speed (m s−1) 7.4 (±3.1) 0.4 19.0

aCDOM(350) (m−1) 0.13 (±0.11) 0.0023 0.45

meridional transect (AMT-7) cruise (Kettle et al., 2001) (1.3–

112.0 pmol OCS L−1, mean 21.7 pmol OCS L−1).

Air–sea fluxes calculated from surface concentrations and

mixing ratios of OCS as a function of wind speed gener-

ally follow the diel cycle of the surface ocean concentration.

While supersaturation prevailed during the day, low night-

time concentrations usually led to oceanic uptake of atmo-

spheric OCS. OCS fluxes integrated over one day ranged

from −0.024 to −0.0002 g S km−2 in the open Indian Ocean

and from 0.38 to 2.7 g S km−2 in the coastal Pacific. During

the observed periods, the ocean was a net sink of atmospheric

OCS in the Indian Ocean, whereas it was a net source in the

eastern Pacific. Although an assessment of net flux is dif-

ficult given the lower temporal resolution during TransPE-

GASO, calculated emissions were in the same range as the

ones measured in the Pacific and Indian Ocean.

The water masses encountered during the cruises to the

Indian Ocean (OASIS) and eastern Pacific (ASTRA-OMZ),

which are used to constrain the global box model, differ con-

siderably with respect to the properties relevant for OCS cy-

cling and, thus, span a large range of possible OCS variabil-

ity. The properties encountered during these two cruises en-

compass or exceed the ones of the Pacific warm pool (cli-

matological averages, Table 4), which is where the location

of the missing source has been hypothesized (Glatthor et al.,

2015; Kuai et al., 2015). Both higher SST and lower wind

speeds (Table 4) would decrease the OCS sea surface con-

centrations in the ocean, leading to decreased emissions to

the atmosphere: higher SSTs favor a stronger degradation by

hydrolysis (Elliott et al., 1989), and lower wind speeds de-

crease the transfer velocity k. Lower integrated daily radia-

tion (SR in Table 4) in the Pacific warm pool also points to

lower OCS production. Hence, our new OCS observations

presented here likely span the range of emission variability

in the tropics.

The observed concentrations and calculated emissions are

approximately 1 order of magnitude lower than the annual

mean surface concentrations and emissions simulated in the

3-D global ocean model NEMO-PISCES (Launois et al.,

2015a).
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Table 4. Comparison of water properties relevant for OCS production and consumption for the cruises OASIS (Indian Ocean, July–

August 2014) and ASTRA-OMZ (eastern Pacific, October–November 2015) with the assumed source region in the Pacific warm pool

(15◦ N–15◦ S, 120–180◦ E). Data from cruises are in situ measurements; the data for the Pacific warm pool were extracted from climatolog-

ical monthly means from sources for the global model run as specified in the Supplement.

Parameter OASIS ASTRA-OMZ Pacific warm pool

SST (◦C) 27.0 ± 1.0 19.6 ± 2.6 28.9 ± 0.9

SSS (g kg−1) 35.0 ± 0.3 35.1 ± 0.3 34.5 ± 0.42

Wind speed (m s−1) 8.2 ± 1.7 7.5 ± 1.8 5.3 ± 0.4

a350 (m−1) 0.039 ± 0.02 0.146 ± 0.02 0.050 ± 0.08

I (W m−2) 226.5 ± 303.0 196.4 ± 283.1 206.4 ± 286.6a

SR (J m−2) 1.9 × 107 ± 1.7 × 106 1.6 × 107 ± 4.5 × 106 8.9 × 106 ± 1.3 × 106

pH (–) 8.03 ± 0.01 –b 8.07 ± 0.01

MLD (m) 43.3 ± 15.8 18.9 ± 7.5 35.9 ± 14.1

a Calculated from an annual mean diurnal cycle based on ERA-Interim sunshine duration and flux. SR: surface radiation, daily

integral. b Assumed pH = 8.15 for box model simulation.

3.2 A direct global oceanic emission estimate for OCS

The OCS observations from the Indian and Pacific Ocean

were used to improve a box model for simulating OCS con-

centrations in the surface ocean (Kettle, 2002; Uher and

Andreae, 1997b; von Hobe et al., 2003). With the a350-

dependent photoproduction constant included, the model re-

produced the diel pattern of OCS concentrations in the sur-

face oceans for both cruises (Fig. 2, black lines). A slight

overestimation of observed concentrations is present for

the Indian Ocean cruise OASIS (observed mean concentra-

tion: 9.1 ± 3.5 pmol L−1; simulated: 10.8 ± 3.9 pmol L−1).

This overestimation was more pronounced in the eastern

Pacific (observed mean: 28.3 ± 19.7 pmol L−1; simulated:

47.3 ± 25.4 pmol L−1) and can largely be attributed to a lack

of downward mixing inherent in the mixed layer box model

due to the assumption of the OCS concentration being con-

stant throughout the entire mixed layer.

Using the linear p−a350 parameterization for the first time

in a global model, the same box model as for the case studies

is applied to estimate sea surface concentrations and fluxes

of OCS on a global scale (Fig. 4). The OCS production is

consistent with the global distribution of CDOM absorption

(Fig. S5), with highest concentrations calculated for coastal

regions and higher latitudes. Despite the photochemical hot

spot in the tropics (30◦ N–30◦ S), degradation by hydrolysis

prevents any accumulation of OCS in the surface water, as

we calculated the lifetime due to hydrolysis to be only 7 h

(Fig. S5). The simulated range of water concentrations is too

low to sustain emissions in the tropics that could close the at-

mospheric budget of OCS (Fig. 4). With saturation ratios in-

tegrated over 1 year, the tropical ocean (30◦ N–30◦ S) is even

undersaturated with respect to OCS, taking up 3.0 Gg S yr−1.

Globally, the integration over one year yields annual oceanic

OCS emissions of 130 Gg S. Our results corroborate the up-

per limit of an earlier study that used an observation-derived

emission inventory (Table 1) (Kettle, 2002) but which in-
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Figure 4. Annual mean of surface ocean concentrations of OCS

simulated with the box model (a) and corresponding emissions (b).

cludes more process-oriented parameterizations as described

in Sect. 2.4. Clearly, our results from both observations and

modeling contradict the latest bottom-up emission estimate

from the NEMO-PISCES model (Launois et al., 2015a), and

do not support a hot spot of direct OCS emissions in the Pa-

cific Warm Pool or the tropical oceans in general.

3.2.1 Comparison to previous ship-based

measurements

The global simulation of OCS surface water concentrations

generally reproduced the lower picomolar range of concen-
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Table 5. Comparison of previous ship campaign measurements with corresponding month and approximate geolocation from the global box

model in this study (L2016), taken either from figures or tables as provided in the original references. Note that the box model is based on

input data from climatological means that do not fully represent the conditions encountered during the respective cruises. Only observational

data with measurements of the full diel cycle were included for comparison. n: number of measurements.

References Season Region Mean OCS ± SD n L2016 mean

(pmol L−1) (pmol L−1)

Mihalopoulos et al. (1992) open Indian Ocean

20◦ N–37◦ S

Mar/May 1986 OCEAT II 19.9 ± 0.5a 20 11.2 ± 6.3

Jul 1987 OCEAT III 19.9 ± 1.0a 14 17.7 ± 13.1

Staubes and Georgii (1993) Nov–Dec 1990 Weddell Sea 109b 126 66.6 ± 49.8

40–72◦ S,72◦ W–24◦ E

Ulshöfer et al. (1995) North Atlantic Ocean

Apr/May 1992 47◦ N 20◦ W 14.9 ± 6.9 118 42.8 ± 11.3

Jan 1994 48–50◦ N, 10–17◦ W 5.3 ± 1.6 120 8.9 ± 3.2

Sep 1994 48–50◦ N, 10–17◦ W 19.0 ± 8.3 235 33.4 ± 3.5

Flöck and Andreae (1996) Jan 1994 northeastern Atlantic Ocean 6.7 (4–11) 120 9.6 ± 3.7

49◦ N, 12◦ W

Ulshöfer and Andreae (1998) Mar 1995 western Atlantic 8.1 ± 7.0 323 15.8

32◦ N, 64◦ W

von Hobe et al. (1999) Jun/Jul 1997 northeastern Atlantic Ocean 23.6 ± 16.0 940 30.5 ± 12.6

30–40◦ N, 8–15◦ W

Kettle et al. (2001) Sep/Oct 1998 Atlantic transect 21.7 ± 19.1 783 22.9 ± 3.2

50◦ N–60◦ S, 1–64◦ W

von Hobe et al. (2001) Aug 1999 Sargasso Sea/BATS 8.6 ± 2.8 518 8.1

32◦ N, 64◦ W

Xu et al. (2001) Oct/Nov 1997 Atlantic meridional transect 14.8 ± 11.4 306 11.8 ± 12.7

53◦ N–34◦ S, 25◦ W–20◦ E

May/Jun 1998 Atlantic meridional transect 18.1 ± 16.1 440 27.8 ± 47.9

53◦ N–34◦ S, 25◦ W–20◦ E

a Converted from ng L−1 with a molar mass of OCS of 60.07 g. b Converted from ng S L−1 with a molar mass of S of 32.1 g.

trations (Table 5), the seasonal pattern of higher concentra-

tions during summer compared to winter (as, for example, in

Ulshöfer et al., 1995) and the spatial pattern of higher con-

centrations in higher latitudes (e.g., Southern Ocean; Staubes

and Georgii, 1993). Given that monthly means of a model

simulation driven by climatological data of the input pa-

rameters are compared to cruise measurements, the absolute

mean deviation of 6.9 pmol L−1 and the mean deviation of

3.7 pmol L−1 indicate an overall good reproduction of obser-

vations (differences between observation and model output

were weighted to the number of observations in Table 4). It

should be noted that, on average, the model overestimates

OCS concentrations as indicated by the positive mean error,

suggesting our emission estimate to be an upper limit to di-

rect oceanic OCS emissions in most regions. The largest de-

viations from observations are found in the Southern Ocean

(see Staubes and Georgii, 1993, in Table 4), where the model

underestimated observations by 40 %. While there are several

explanations for this, i.e., a possible violation of the under-

lying assumption of a constant OCS production in regions

with deep mixed layers such as the Southern Ocean, or the

missing satellite data for CDOM during polar nights, it is a

clear indication of the need for more observations from high

latitudes. However, this underestimation does not interfere

with our conclusion drawn for the tropical oceans, where the

location of the missing source is derived from top-down ap-

proaches.

3.2.2 Uncertainties

Simulated concentrations and fluxes carry uncertainties from

input parameters and process parameterizations. One major

uncertainty associated with the mixed layer box model ap-

proach arises from the fact that it does not adequately ac-

count for downward mixing and vertical concentration gra-

dients within the mixed layer. Under most circumstances,

www.atmos-chem-phys.net/17/385/2017/ Atmos. Chem. Phys., 17, 385–402, 2017



396 S. T. Lennartz et al.: Oceanic emissions of OCS

and especially in the tropical open ocean, where hydrolysis

greatly exceeds surface outgassing and low a350 makes pho-

toproduction extend further down in the water column, the

model tends to overestimate the real OCS concentrations, as

was shown for our two cruises above. Therefore, we deem

the fluxes from our global simulation to represent an upper

limit of the true fluxes. Only at high latitudes would we ex-

pect more complex uncertainties, because hydrolysis at low

temperatures is slow and only photoproduction and loss by

outgassing are directly competing at the very surface.

Other uncertainties are associated with the calculation of

the photoproduction rate. The wavelength of 443 nm com-

bines the absorption of detritus and CDOM, which could

have an impact especially in river plumes, where terrestrial

material is transported into the ocean. As it is the CDOM

that is important for photochemistry, assuming the 443 nm

is purely CDOM would lead to an overestimation of photo-

production and therefore is a conservative estimate. It should

also be noted that a single spectral slope from 443 to 350 nm

in the global simulation is a simplification. Furthermore, us-

ing a wavelength integrated photoproduction rate constant in-

stead of a wavelength-resolved approach, which would take

global variations in the CDOM and light spectra into ac-

count, is an additional simplification. It has been shown that

this does not lead to large differences regionally (von Hobe

et al., 2003) but could, potentially, lead to variations glob-

ally. Our p–CDOM relationship is a first step for constrain-

ing this variability globally in one parameterization, as it in-

corporates photoproduction rate constants optimized to ob-

servations and thus accounting for differences in the light

and CDOM spectra. More data from different regions can

help to further constrain this relationship in future studies.

Despite these simplifications, the simulated concentrations

agree very well with previous observations (n > 4000, Ta-

ble 4). To test the sensitivity of our box model to the pho-

toproduction rate constant, we performed a sensitivity test

with a photoproduction increased by a factor of 5 in the trop-

ical region (30◦ N–30◦ S; note that this factor is considerably

larger than the uncertainty in the p–CDOM relationship).

This leads to an annual mean concentration of 35.1 pmol L−1

in the tropics (30◦ N–30◦ S), resulting in tropical direct emis-

sions of 160 Gg S as OCS per year. The efficient hydrolysis in

warm tropical waters prevents OCS concentrations from ac-

cumulating despite the high photoproduction and still results

in emissions too low to account for the missing source.

With a mean error of 3.7 pmol L−1 in the OCS surface wa-

ter concentrations added to (subtracted from) the modeled

concentration and subsequent calculation of fluxes using an-

nual climatologies for wind, pressure and SST (same data

sources as global simulation forcing data), we calculate an

uncertainty of 60 %, which translates into a total uncertainty

in the integrated global flux of 80 Gg S yr−1.

Figure 5. Measured concentration of CS2 in surface waters during

(a) ASTRA-OMZ in the eastern Pacific Ocean and (b) TransPE-

GASO in the Atlantic Ocean.

3.3 Indirect OCS emissions by DMS and CS2

A significant contribution to the OCS budget in the atmo-

sphere results from oceanic emissions of DMS and CS2 that

are partially converted to OCS on timescales of hours to days

(Chin and Davis, 1993; Watts, 2000; Kettle, 2002). A yield

of 0.7 % for OCS is used for the reaction of DMS with OH

(Barnes et al., 1994), which results in a global oceanic source

of DMS from OCS of 80 (65–110) Gg S yr−1 based on the

procedure described in Sect. 2.5. The uncertainty range of

65–110 Gg S yr−1 originated from the uncertainty in oceanic

emissions, not the conversion factor. This conversion fac-

tor is much more uncertain, as the formation of OCS from

DMS involves a complex multi-step reaction mechanism that

is not fully understood. It has been shown in laboratory ex-

periments that the presence of NOx reduces the OCS yield

considerably (Arsene et al., 2001), which would make our

indirect emission estimate an upper limit. However, the yield

was measured under laboratory conditions and may be dif-

ferent and more variable under natural conditions.

DMS emissions do not show a pronounced hot spot in

the Pacific warm pool region, but as DMS transports much

more sulfur across the air–sea interface than OCS, even low

changes in the OCS yield could affect the atmospheric budget

of OCS. As the spatial oceanic emission pattern of DMS does

not reflect the spatial pattern of the assumed missing source,

a locally specific tropospheric change in the conversion yield

would be one potential way of bringing the patterns in agree-

ment. While it is possible that the OCS yield could vary un-

der certain conditions (e.g., it cannot be excluded that the low

OH concentrations in the broader Pacific warm pool area as

suggested by Rex et al., 2014, influence the yield), the (lo-

cal) increase in the conversion factor would need to be on the

order of a factor of 10–100.

For CS2, the atmospheric reaction pathway producing

OCS is better understood with a well-constrained molar

conversion ratio of 0.81 (Chin and Davis, 1993). However,

the global distribution of oceanic CS2 concentration, and

hence its emissions to the atmosphere, is poorly known.

In our study, surface CS2 concentrations (Fig. S6) were

on average 17.8 ± 8.9 pmol L−1 during ASTRA-OMZ, and

62.5 ± 42.1 pmol L−1 during TransPEGASO (Table 3). The
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latter values are higher than previously reported concentra-

tions from the AMT-7 cruise in the central Atlantic (Ket-

tle et al., 2001) (10.9 ± 15.2 pmol L−1). We extrapolate a

weighted mean of the CS2 emissions from TransPEGASO

(n = 42, 13.7 ± 9.8 g S d−1 km−2), ASTRA-OMZ (n = 122,

4.1 ± 3.2 g S d−1 km−2) and AMT-7 (Kettle et al., 2001)

(n = 744, 1.6 ± 1.8 g S d−1 km−2) in order to estimate CS2-

derived OCS emissions from the global ocean. According

to our extrapolation, 135 (7–260) Gg S yr−1 enters the atmo-

sphere as oceanic CS2 emissions converted to OCS. The un-

certainty range of 7–260 Gg S yr−1 results from extrapolat-

ing the highest and the lowest emissions encountered dur-

ing the cruises to the global ocean. This number is at the

highest end of the range for OCS emissions from globally

simulated CS2 oceanic concentrations (Kettle, 2000, 2002),

as measured CS2 concentrations from the cruises ASTRA-

OMZ and TransPEGASO are higher than the simulated sur-

face concentrations in Kettle (2000) for the respective month.

However, the spatial pattern of higher concentrations and

emissions in the tropical region in our measurements agrees

well with the spatial pattern simulated in Kettle (2000).

Nonetheless, even the extrapolation of the highest measure-

ment would not close the budget for the three largest missing

source estimates (Table 1).

For oceanic emission estimates used to constrain GPP,

quantifying the seasonal cycle of the single contributors is

essential. For example, high emissions during oceanic spring

and fall blooms could mask OCS uptake by the terrestrial

vegetation, and therefore neglecting them could lead to an

underestimation of global GPP, with implications for the at-

mospheric and terrestrial carbon budget.

4 Conclusions and outlook

Considering the observational evidence and the modeled

global emission estimate of 130 ± 80 Gg S yr−1, direct OCS

emissions from the oceans are too low to account for the

missing atmospheric source. Together with indirect emis-

sions, the oceanic source strength of OCS would add up

to 345 Gg S yr−1, compared to the 465–1089 Gg S yr−1 re-

quired to balance the suggested increase in vegetation up-

take. Direct and even additional indirect oceanic emissions

of OCS are thus unlikely to balance the budget after the up-

ward revision of the vegetation sink. Largest uncertainties are

associated with the indirect emission estimates, especially in

the conversion of DMS to OCS and the global source strength

of CS2.

As our study suggests, the search for an additional source

of OCS to the atmosphere should include other sources than

oceanic emissions alone. There are indications of other parts

of the OCS budget being underestimated, such as domes-

tic coal combustion (Du et al., 2016). Emissions of biomass

burning and direct and indirect anthropogenic emissions have

been considered in previous estimates (e.g., 315.5 Gg S yr−1

in Berry et al., 2013, 224 Gg S yr−1 in Kuai et al., 2015, and

219 Gg S yr−1 in Glatthor et al., 2015), but a recent anthro-

pogenic emission estimate by Lee and Brimblecombe (2016)

increases this number to 598 Gg S yr−1, which would already

bring sources and sinks closer to agreement. They attribute

the largest direct OCS emissions to biomass and biofuel

burning, as well as pulp and paper manufacturing, and the

largest CS2 emissions to the rayon industry. Hence, a hot spot

of anthropogenic emissions in the Asian continent might be

a potential candidate, together with atmospheric transport, to

produce atmospheric mixing ratios as observed by satellite.

A redistribution of the magnitude and seasonality of

known sources and sinks could also bring top-down and

bottom-up estimates closer together. For example, the gen-

eral view of oxic soils as a sink for OCS has recently been

challenged. Field (Maseyk et al., 2014; Billesbach et al.,

2014) and incubation studies (Whelan et al., 2016) show

that some oxic soils may shift from OCS uptake to emis-

sion depending on the temperature and water content. Fur-

thermore, it has been speculated previously that vegetation

uptake might not be solely responsible for the decrease in

OCS mixing ratios in fall because of the temporal lag be-

tween CO2 and OCS minimum (Montzka et al., 2007). The

observed seasonality in mixing ratios is a superposition of the

seasonality of all individual sources and sinks. These season-

alities are currently neglected or associated with a consider-

able uncertainty. An improved understanding of the season-

ality of the individual sources and sinks could help to better

constrain the gap in the atmospheric budget. First steps to re-

solve OCS seasonality in sources and sinks are currently be-

ing undertaken, e.g., in the case of anthropogenic emissions

(Campbell et al., 2015).

All in all, better constraints on the seasonality and magni-

tude of the atmospheric OCS sources and sinks are critical

for a better assessment of the role of this compound in cli-

mate and its application to quantify GPP on a global scale.

This study confirms oceanic emission as the largest known

single source of atmospheric OCS but shows that its magni-

tude is unlikely to balance the gap in the atmospheric OCS

budget.

5 Data availability

All data, including OCS and CS2 measurements in sea water

and the marine boundary layer, as well as OCS model output,

are available upon request from the authors (correspondence

to S. T. Lennartz, slennartz@geomar.de or C.A. Marandino,

cmarandino@geomar.de).
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Appendix A: List of parameters

Symbol/abbreviation Meaning

a350 absorption coefficient of CDOM at 350 nm

a fitted parameter in diurnal cycle of I

b fitted parameter in diurnal cycle of I

cair concentration in air

COCS concentration of OCS in water

F gas flux

H Henry constant

I downwelling solar radiation

K ion product of seawater

kw water-side transfer velocity in air–sea gas exchange

MLD mixed layer depth

p photoproduction rate constant

SSS sea surface salinity

SST sea surface temperature

Sc Schmidt number

t time

θ zenith angle

u10 wind speed at 10 m height

UV ultraviolet radiation

z depth
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The Supplement related to this article is available online
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Acknowledgements. We thank the captain and crew of the research

vessels SONNE I and II as well as Hesperides for assistance during

the cruises SO235-OASIS (BMBF – FK03G0235A), SO243-

ASTRA-OMZ (BMBF – FK03G0243A) and TransPEGASO. We

thank H. W. Bange and A. Körtzinger for providing equipment for

the continuous underway system and C. Schlundt for support dur-

ing CS2 measurements. This work was supported by the German

Federal Ministry of Education and Research through the project

ROMIC-THREAT (BMBF-FK01LG1217A and 01LG1217B)

and ROMIC-SPITFIRE (BMBF-FKZ: 01LG1205C). Additional

funding for Christa A. Marandino and Sinikka T. Lennartz came

from the Helmholtz Young Investigator Group of Christa A.

Marandino (TRASE-EC, VH-NG-819), from the Helmholtz As-

sociation through the President’s Initiative and Networking Fund,

and from the GEOMAR Helmholtz-Zentrum für Ozeanforschung

Kiel. Kirstin Krüger acknowledges financial support from the

EU FP7 StratoClim project (603557), and Pau Cortes and Rafel

Simo acknowledge support from the Spanish MINECO through

PEGASO (CTM2012-37615). We are grateful for the data provided

by ECMWF (ERA-Interim) and NASA (MODIS-Aqua). DKRZ

and its scientific steering committee are gratefully acknowledged

for providing the HPC and data archiving resources for this

consortial project ESCiMo (Earth System Chemistry Integrated

Modelling). Elliott Atlas acknowledges support from the NASA

Upper Atmosphere Research Program.

The article processing charges for this open-access

publication were covered by a Research

Centre of the Helmholtz Association.

Edited by: S. Brown

Reviewed by: two anonymous referees

References

Andreae, M. O. and Ferek, R.: Photochemical production of car-

bonyl sulfide in seawater and its emission to the atmosphere,

Global Biogeochem. Cy., 6, 175–183, 2002.

Arévalo-Marténez, D. L., Beyer, M., Krumbholz, M., Piller, I.,

Kock, A., Steinhoff, T., Körtzinger, A., and Bange, H. W.: A

new method for continuous measurements of oceanic and at-

mospheric N2O, CO and CO2: performance of off-axis inte-

grated cavity output spectroscopy (OA-ICOS) coupled to non-

dispersive infrared detection (NDIR), Ocean Sci., 9, 1071–1087,

doi:10.5194/os-9-1071-2013, 2013.

Arneth, A., Harrison, S. P., Zaehle, S., Tsigaridis, K., Menon, S.,

Bartlein, P. J., Feichter, J., Korhola, A., Kulmala, M., O’Donnell,

D., Schurgers, G., Sorvari, S., and Vesala, T.: Terrestrial biogeo-

chemical feedbacks in the climate system, Nat. Geosci., 3, 525–

532, 2010.

Arsene, C., Barnes, I., Becker, K. H., and Mocanu, R.: FT-IR prod-

uct study on the photo-oxidation of dimethyl sulphide in the pres-

ence of NOx – temperature dependence, Atmos. Environ., 35,

3769–3780, 2001.

Asaf, D., Rotenberg, E., Tatarinov, F., Dicken, U., Montzka, S. A.,

and Yakir, D.: Ecosystem photosynthesis inferred from measure-

ments of carbonyl sulphide flux, Nat. Geosci., 6, 186–190, 2013.

Asher, W. E. and Wanninkhof, R.: The effect of bubble-mediated

gas transfer on purposeful dual-gaseous tracer experiments, J.

Geophys. Res.-Ocean., 103, 10555–10560, 1998.

Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hamp-

son, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.:

Evaluated kinetic and photochemical data for atmospheric chem-

istry: Volume I – gas phase reactions of Ox , HOx , NOx and SOx

species, Atmos. Chem. Phys., 4, 1461–1738, doi:10.5194/acp-4-

1461-2004, 2004.

Barnes, I., Becker, K. H., and Patroescu, I.: The tropospheric ox-

idation of dimethyl sulfide: A new source of carbonyl sulfide,

Geophys. Res. Lett., 21, 2389–2392, 1994.

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carval-

hais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., and Bonan,

G. B.: Terrestrial gross carbon dioxide uptake: global distribution

and covariation with climate, Science, 329, 834–838, 2010.

Berry, J., Wolf, A., Campbell, J. E., Baker, I., Blake, N., Blake, D.,

Denning, A. S., Kawa, S. R., Montzka, S. A., Seibt, U., Stimler,

K., Yakir, D., and Zhu, Z.: A coupled model of the global cy-

cles of carbonyl sulfide and CO2: A possible new window on the

carbon cycle, J. Geophys. Res.-Biogeo., 118, 842–852, 2013.

Billesbach, D. P., Berry, J. A., Seibt, U., Maseyk, K., Torn, M. S.,

Fischer, M. L., Abu-Naser, M., and Campbell, J. E.: Growing

season eddy covariance measurements of carbonyl sulfide and

CO2 fluxes: COS and CO2 relationships in Southern Great Plains

winter wheat, Agr. Forest Meteorol., 184, 48–55, 2014.

Brown, K. A. and Bell, J. N. B.: Vegetation – The missing sink in

the global cycle of carbonyl sulphide (COS), Atmos. Environ.,

20, 537–540, 1986.

Brühl, C., Lelieveld, J., Crutzen, P. J., and Tost, H.: The role of

carbonyl sulphide as a source of stratospheric sulphate aerosol

and its impact on climate, Atmos. Chem. Phys., 12, 1239–1253,

doi:10.5194/acp-12-1239-2012, 2012.

Campbell, J. E., Carmichael, G. R., Chai, T., Mena-Carrasco, M.,

Tang, Y., Blake, D. R., Blake, N. J., Vay, S. A., Collatz, G. J.,

Baker, I., Berry, J. A., Montzka, S. A., Sweeney, C., Schnoor,

J. L., and Stanier, C. O.: Photosynthetic Control of Atmospheric

Carbonyl Sulfide During the Growing Season, Science, 322,

1085–1088, 2008.

Campbell, J. E., Whelan, M. E., Seibt, U., Smith, S. J., Berry, J. A.,

and Hilton, T. W.: Atmospheric carbonyl sulfide sources from

anthropogenic activity: Implications for carbon cycle constraints,

Geophys. Res. Lett., 42, 3004–3010, 2015.

Chin, M. and Davis, D. D.: Global sources and sinks of OCS and

CS2 and their distributions, Global Biogeochem. Cy., 7, 321–

337, 1993.

Crutzen, P. J.: The possible importance of CSO for the sulfate layer

of the stratosphere, Geophys. Res. Lett., 3, 73–76, 1976.

De Bruyn, W., Swartz, E., Hu, J., Shorter, J., Davidovits, P.,

Worsnop, D., Zahniser, M., and Kolb, C.: Henrys law solubil-

ities and Setcheniw coefficients for biogenic reduced sulphur

species obtained from gas-liquid uptake measurements, J. Geo-

phys. Res.-Atmos., 100, 7245–7251, 1995.

www.atmos-chem-phys.net/17/385/2017/ Atmos. Chem. Phys., 17, 385–402, 2017



400 S. T. Lennartz et al.: Oceanic emissions of OCS

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,

P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,

Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-

lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,

A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,

Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,

A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey,

C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The

ERA-Interim reanalysis: configuration and performance of the

data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,

2011.

de Gouw, J. A., Warneke, C., Montzka, S. A., Holloway, J. S., Par-

rish, D. D., Fehsenfeld, F. C., Atlas, E. L., Weber, R. J., and

Flocke, F. M.: Carbonyl sulfide as an inverse tracer for biogenic

organic carbon in gas and aerosol phases, Geophys. Res. Lett.,

36, L05804, doi:10.1029/2008GL036910, 2009.

Dickinson, A. G. and Riley, J.: The estimation of acid dissociation

constants in seawater media from potentiometric titrations with

strong base, Mar. Chem., 7, 89–99, 1979.

Du, Q., Zhang, C., Mu, Y., Cheng, Y., Zhang, Y., Liu, C., Song,

M., Tian, D., Liu, P., Liu, J., Xue, C., and Ye, C.: An im-

portant missing source of atmospheric carbonyl sulfide: Do-

mestic coal combustion, Geophys. Res. Lett., 43, 8720–8727,

doi:10.1002/2016GL070075, 2016.

Elliott, S., Lu, E., and Rowland, F. S.: Rates and mechanisms for

the hydrolysis of carbonyl sulfide in natural waters, Environ. Sci.

Tech., 23, 458–461, 1989.

Ferek, R. and Andreae, M. O.: The supersaturation of carbonyl sul-

fide in surface waters of the pacific oceans off Peru, Geophys.

Res. Lett., 10, 393–395, 1983.

Ferek, R. and Andreae, M. O.: Photochemical production of car-

bonyl sulphide in marine surface waters, Letters to Nature, 1984,

148–150, 1984.

Fichot, C. G. and Miller, W. L.: An approach to quantify depth-

resolved marine photochemical fluxes using remote sensing: Ap-

plication to carbon monoxide (CO) photoproduction, Remote

Sens. Environ., 114, 1363–1377, 2010.

Flöck, O. and Andreae, M. O.: Photochemical and non-

photochemical formation and destruction of carbonyl sulfide and

methyl mercaptan in ocean waters, Mar. Chem., 54, 11–26, 1996.

Flöck, O. R., Andreae, M. O., and Dräger, M.: Environmentally

relevant precursors of carbonyl sulfide in aquatic systems, Mar.

Chem., 59, 71–85, 1997.

Glatthor, N., Höpfner, M., Baker, I. T., Berry, J., Campbell, J. E.,

Kawa, S. R., Krysztofiak, G., Leyser, A., Sinnhuber, B. M.,

Stiller, G. P., Stinecipher, J., and Clarmann, T. V.: Tropical

sources and sinks of carbonyl sulfide observed from space, Geo-

phys. Res. Lett., 42, 10082–10090, doi:10.1002/2015GL066293,

2015.

Hayduk, W. and Laudie, H.: Prediction of diffusion coefficients for

nonelectrolytes in dilute aqueous solutions, AIChE Journal, 20,

611–615, 1974.

Jöckel, P., Tost, H., Pozzer, A., Kunze, M., Kirner, O., Brenninkmei-

jer, C. A. M., Brinkop, S., Cai, D. S., Dyroff, C., Eckstein, J.,

Frank, F., Garny, H., Gottschaldt, K.-D., Graf, P., Grewe, V.,

Kerkweg, A., Kern, B., Matthes, S., Mertens, M., Meul, S., Neu-

maier, M., Nützel, M., Oberländer-Hayn, S., Ruhnke, R., Runde,

T., Sander, R., Scharffe, D., and Zahn, A.: Earth System Chem-

istry integrated Modelling (ESCiMo) with the Modular Earth

Submodel System (MESSy) version 2.51, Geosci. Model Dev.,

9, 1153–1200, doi:10.5194/gmd-9-1153-2016, 2016.

Johnson, J. E. and Harrison, H.: Carbonyl Sulfide Concentrations

in the Surface Waters and Above the Pacific Ocean, J. Geophys.

Res., 91, 7883–7888, 1986.

Kettle, A.: Extrapolations of the Flux of Dimethylsulfide, Carbon

Monooxide, Carbonyl Sulfide and Carbon Disulfide from the

Oceans, PhD thesis, 2000.

Kettle, A. J.: Global budget of atmospheric carbonyl sulfide: Tem-

poral and spatial variations of the dominant sources and sinks, J.

Geophys. Res., 107, 4658, doi:10.1029/2002JD002187, 2002.

Kettle, A. J., Rhee, T. S., von Hobe, M., Poulton, A., Aiken, J.,

and Andreae, M. O.: Assessing the flux of different volatile sul-

fur gases from the ocean to the atmosphere, J. Geophys. Res.-

Atmos., 106, 12193–12209, 2001.

Kremser, S., Jones, N. B., Palm, M., Lejeune, B., Wang, Y., Smale,

D., and Deutscher, N. M.: Positive trends in Southern Hemi-

sphere carbonyl sulfide, Geophys. Res. Lett., 42, 9473–9480,

2015.

Kremser, S., Thomason, L. W., von Hobe, M., Hermann, M., Desh-

ler, T., Timmreck, C., Toohey, M., Stenke, A., Schwarz, J. P.,

Weigel, R., Fueglistaler, S., Prata, F. J., Vernier, J.-P., Schlager,

H., Barnes, J. E., Antuña-Marrero, J.-C., Fairlie, D., Palm, M.,

Mahieu, E., Notholt, J., Rex, M., Bingen, C., Vanhellemont,

F., Bourassa, A., Plane, J. M. C., Klocke, D., Carn, S. A.,

Clarisse, L., Trickl, T., Neely, R., James, A. D., Rieger, L., Wil-

son, J. C., and Meland, B.: Stratospheric aerosol – Observations,

processes, and impact on climate, Rev. Geophys., 54, 278–335,

doi:10.1002/2015RG000511, 2016.

Kuai, L., Worden, J. R., Campbell, J. E., Kulawik, S. S., Li, K.-F.,

Lee, M., Weidner, R. J., Montzka, S. A., Moore, F. L., Berry,

J. A., Baker, I., Denning, A. S., Bian, H., Bowman, K. W., Liu,

J., and Yung, Y. L.: Estimate of carbonyl sulfide tropical oceanic

surface fluxes using Aura Tropospheric Emission Spectrome-

ter observations, J. Geophys. Res.-Atmos., 120, 11012–11023,

2015.

Lana, A., Bell, T. G., Simo, R., Vallina, S. M., Ballabrera-Poy,

J., Kettle, A. J., Dachs, J., Bopp, L., Saltzman, E. S., Ste-

fels, J., Johnson, J. E., and Liss, P. S.: An updated climatology

of surface dimethlysulfide concentrations and emission fluxes

in the global ocean, Global Biogeochem. Cy., 25, GB1004,

doi:10.1029/2010GB003850, 2011.

Launois, T., Belviso, S., Bopp, L., Fichot, C. G., and Peylin, P.:

A new model for the global biogeochemical cycle of carbonyl

sulfide – Part 1: Assessment of direct marine emissions with

an oceanic general circulation and biogeochemistry model, At-

mos. Chem. Phys., 15, 2295–2312, doi:10.5194/acp-15-2295-

2015, 2015a.

Launois, T., Peylin, P., Belviso, S., and Poulter, B.: A new model

of the global biogeochemical cycle of carbonyl sulfide – Part 2:

Use of carbonyl sulfide to constrain gross primary productivity in

current vegetation models, Atmos. Chem. Phys., 15, 9285–9312,

doi:10.5194/acp-15-9285-2015, 2015.

Lee, C.-L. and Brimblecombe, P.: Anthropogenic contributions

to global carbonyl sulfide, carbon disulfide and organosulfides

fluxes, Earth-Sci. Rev., 160, 1–18, 2016.

Lennartz, S. T., Krysztofiak, G., Marandino, C. A., Sinnhuber, B.-

M., Tegtmeier, S., Ziska, F., Hossaini, R., Krüger, K., Montzka,

S. A., Atlas, E., Oram, D. E., Keber, T., Bönisch, H., and Quack,

Atmos. Chem. Phys., 17, 385–402, 2017 www.atmos-chem-phys.net/17/385/2017/



S. T. Lennartz et al.: Oceanic emissions of OCS 401

B.: Modelling marine emissions and atmospheric distributions of

halocarbons and dimethyl sulfide: the influence of prescribed wa-

ter concentration vs. prescribed emissions, Atmos. Chem. Phys.,

15, 11753–11772, doi:10.5194/acp-15-11753-2015, 2015.

Liss, P. S. and Slater, P. G.: Flux of gases across air-sea interface,

Nature, 247, 181–184, 1974.

Maseyk, K., Berry, J. A., Billesbach, D., Campbell, J. E., Torn,

M. S., Zahniser, M., and Seibt, U.: Sources and sinks of carbonyl

sulfide in an agricultural field in the Southern Great Plains, P.

Natl. Acad. Sci. USA, 111, 9064–9069, 2014.

McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct

covariance air-sea CO2 fluxes, J. Geophys. Res.-Ocean., 106,

16729–16745, 2001.

Mihalopoulos, N., Nguyen, B. C., Putaud, J. P., and Belviso, S.: The

oceanic source of carbonyl sulfide (COS), Atmos. Environ., 26A,

1383–1394, 1992.

Miller, S., Marandino, C., De Bruyn, W., and Saltzman, E. S.:

Air – sea gas exchange of CO2 and DMS in the North At-

lantic by eddy covariance, Geophys. Res. Lett., 36, L15816,

doi:10.1029/2009GL038907, 2009.

Montzka, S. A., Calvert, P., Hall, B. D., Elkins, J. W., Conway,

T. J., Tans, P. P., and Sweeney, C.: On the global distribution,

seasonality, and budget of atmospheric carbonyl sulfide (COS)

and some similarities to CO2, J. Geophys. Res., 112, D09302,

doi:10.1029/2006JD007665, 2007.

Najjar, R., Erickson, D., and Madronich, S.: Modeling the air-sea

fluxes of gases formed from the decomposition of dissolved or-

ganic matter: Carbonyl sulfide and carbon monoxide, John Wiley

& Sons, 107–132, 1995.

NASA: MODIS-Aqua Ocean Color Data, available at: https://

oceancolor.gsfc.nasa.gov/cgi/l3 (last access: 30 May 2015), Sen-

sor: Aqua MODIS, product name: Absorption die to gelbstoff

and detrital material at 443 nm, GIOP model, 2014.

Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,

Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ

evaluation of air-sea gas exchange parameterizations using novel

conservative and volatile tracers, Global Biogeochem. Cy., 14,

373–387, 2000.

Notholt, J., Kuang, Z., Rinsland, C. P., Toon, G. C., Rex, M., Jones,

N., Albrecht, T., Deckelmann, H., Krieg, J., Weinzierl, C., Binge-

mer, H., Weller, R., and Schrems, O.: Enhanced Upper Tropical

Tropospheric COS: Impact on the Stratospheric Aerosol Layer,

Science, 300, 307–310, 2003.

Pos, W. H., Riemer, D. D., and Zika, R. G.: Carbonyl sulfide (OCS)

and carbon monoxide (CO) in natural waters: evidence of a cou-

pled production pathway, Mar. Chem., 62, 89–101, 1998.

Pozzer, A., Jöckel, P., Sander, R., Williams, J., Ganzeveld, L., and

Lelieveld, J.: Technical Note: The MESSy-submodel AIRSEA

calculating the air-sea exchange of chemical species, At-

mos. Chem. Phys., 6, 5435–5444, doi:10.5194/acp-6-5435-2006,

2006.

Protoschill-Krebs, G. and Kesselmeier, J.: Enzymatic Pathways for

the Consumption of Carbonyl Sulphide (COS) by Higher Plants,

Bot. Acta, 105, 206–212, 1992.

Rasmussen, R. A., Khalil, M. A. K., and Hoyt, S. D.: The oceanic

source of carbonyl sulfide (OCS), Atmos. Environ., 16, 1591–

1594, 1982.

Rex, M., Wohltmann, I., Ridder, T., Lehmann, R., Rosenlof, K.,

Wennberg, P., Weisenstein, D., Notholt, J., Krüger, K., Mohr,

V., and Tegtmeier, S.: A tropical West Pacific OH minimum and

implications for stratospheric composition, Atmos. Chem. Phys.,

14, 4827–4841, doi:10.5194/acp-14-4827-2014, 2014.

Sandoval-Soto, L., Stanimirov, M., von Hobe, M., Schmitt, V.,

Valdes, J., Wild, A., and Kesselmeier, J.: Global uptake of car-

bonyl sulfide (COS) by terrestrial vegetation: Estimates corrected

by deposition velocities normalized to the uptake of carbon diox-

ide (CO2), Biogeosciences, 2, 125–132, doi:10.5194/bg-2-125-

2005, 2005.

Schauffler, S. M., Atlas, E. L., Flocke, F., Lueb, R. A., Stroud, V.,

and Travnicek, W.: Measurements of bromine containing organic

compounds at the tropical tropopause, Geophys. Res. Lett., 25,

317–320, 56, 1998.

Schmidtko, S., Johnson, G. C., and Lyman, J. M.: MIMOC: A

global monthly isopycnal upper-ocean climatology with mixed

layers, J. Geophys. Res.-Ocean., 118, 1658–1672, 2013.

Schrade, S.: Ground based measurements of Carbon Dioxide and

other climatically relevant trace gases using Off-Axis Integrated-

Cavity-Output-Spectroscopy (ICOS), Diploma Thesis, 2011.

Sikorski, R. J. and Zika, R. G.: Modeling mixed-layer photochem-

istry of H2O2: Optical and chemical modeling of production, J.

Geophys. Res.-Ocean., 98, 2315–2328, 1993.

Staubes, R. and Georgii, H.-W.: Biogenic sulfur compounds in sea-

water and the atmosphere of the Antarctic region, Tellus, 45B,

127–137, 1993.

Stefels, J., Steinke, M., Turner, S., Malin, G., and Belviso, S.: Envi-

ronmental constraints on the production and removal of the cli-

matically active gas dimethylsulphide (DMS) and implications

for ecosystem modelling, Biogeochemistry, 83, 245–275, 2007.

Stramma, L., Fischer, T., Grundle, D. S., Krahmann, G., Bange, H.

W., and Marandino, C. A.: Observed El Niño conditions in the

eastern tropical Pacific in October 2015, Ocean Sci., 12, 861–

873, doi:10.5194/os-12-861-2016, 2016.

Suntharalingam, P., Kettle, A. J., Montzka, S. M., and Jacob, D. J.:

Global 3-D model analysis of the seasonal cycle of atmospheric

carbonyl sulfide: Implications for terrestrial vegetation uptake,

Geophys. Res. Lett., 35, L19801, doi:10.1029/2008GL034332,

2008.

Turco, R. P., Whitten, R. C., Toon, O. B., Pollack, J. B., and Hamill,

P.: OCS, stratospheric aerosols and climate, Nature, 283, 283–

285, doi:10.1038/283283a0, 1980.

Uher, G. and Andreae, M. O.: The diel cycle of carbonyl sulfide

in marine surface waters: field study results and a simple model,

Atmos. Geochem., 2, 313–344, 1997a.

Uher, G. and Andreae, M. O.: Photochemical production of car-

bonyl sulfide in North Sea water: A process study, Limnol.

Oceanogr., 42, 432–442, 1997b.

Ulshöfer, V. and Andreae, M. O.: Carbonyl Sulfide (COS) in

the Surface Ocean and the Atmospheric COS Budget, Atmos.

Geochem., 3, 283–303, 1998.

Ulshöfer, V., Uher, G., and Andreae, M. O.: Evidence for a win-

ter sink of atmospheric carbonyl sulfide in the northeast Atlantic

Ocean, Geophys. Res. Lett., 22, 2601–2604, 1995.

von Hobe, M., Kettle, A. J., and Andreae, M. O.: Carbonyl sulphide

in and over seawater: summer data from the northeast Atlantic

Ocean, Atmos. Environ., 33, 3503–3514, 1999.

von Hobe, M., Cutter, G. A., Kettle, A. J., and Andreae, M. O.: Dark

production: A significant source of oceanic COS, J. Geophys.

Res., 106, 31217–31226, 2001.

www.atmos-chem-phys.net/17/385/2017/ Atmos. Chem. Phys., 17, 385–402, 2017



402 S. T. Lennartz et al.: Oceanic emissions of OCS

von Hobe, M., Najjar, R., Kettle, A., and Andreae, M.: Photochem-

ical and physical modeling of carbonyl sulfide in the ocean, J.

Geophys. Res., 108, 3229, doi:10.1029/2000JC000712, 2003.

Wang, Y., Deutscher, N. M., Palm, M., Warneke, T., Notholt, J.,

Baker, I., Berry, J., Suntharalingam, P., Jones, N., Mahieu, E.,

Lejeune, B., Hannigan, J., Conway, S., Mendonca, J., Strong,

K., Campbell, J. E., Wolf, A., and Kremser, S.: Towards under-

standing the variability in biospheric CO2 fluxes: using FTIR

spectrometry and a chemical transport model to investigate the

sources and sinks of carbonyl sulfide and its link to CO2, At-

mos. Chem. Phys., 16, 2123–2138, doi:10.5194/acp-16-2123-

2016, 2016.

Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and

McGillis, W. R.: Advances in Quantifying Air-Sea Gas Exchange

and Environmental Forcing, Ann. Rev. Mar. Sci., 1, 213–244,

2009.

Watts, S. F.: The mass budgets of carbonyl sulfide, dimethyl sulfide,

carbon disulfide and hydrogen sulfide, Atmos. Environ., 34, 761–

779, 2000.

Weiss, P., Andrews, S., Johnson, J. E., and Zafiriou, O.: Photopro-

duction of carbonyl sulfide in south Pacific Ocean waters as a

function of irradiation wavelength, Geophys. Res. Lett., 22, 215–

218, 1995a.

Weiss, P., Johnson, J. E., Gammon, R., and Bates, T.: Reevaluation

of the open ocean source of carbonyl sulfide to the atmosphere,

J. Geophys. Res., 100, 23083–23092, 1995b.

Whelan, M. E., Hilton, T. W., Berry, J. A., Berkelhammer, M., De-

sai, A. R., and Campbell, J. E.: Carbonyl sulfide exchange in soils

for better estimates of ecosystem carbon uptake, Atmos. Chem.

Phys., 16, 3711–3726, doi:10.5194/acp-16-3711-2016, 2016.

Xie, H., Moore, R. M., and Miller, W. L.: Photochemical production

of carbon disulphide in seawater, J. Geophys. Res.-Ocean., 103,

5635–5644, 1998.

Xie, H., Scarratt, M. G., and Moore, R. M.: Carbon disulphide pro-

duction in laboratory cultures of marine phytoplankton, Atmos.

Environ., 33, 3445–3453, 1999.

Xu, X.: Investigations into the tropospheric cycle of COS: atmo-

spheric distribution, air-sea and air-vegetation exchanges, Phd

thesis, 2001.

Xu, X., Bingemer, H. G., Georgii, H. W., Schmidt, U., and Bartell,

U.: Measurements of carbonyl sulfide (COS) in surface seawater

and marine air, and estimates of the air-sea flux from observa-

tions during two Atlantic cruises, J. Geophys. Res., 106, 3491,

doi:10.1029/2000JD900571, 2001.

Atmos. Chem. Phys., 17, 385–402, 2017 www.atmos-chem-phys.net/17/385/2017/


