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Abstract. The climate active trace-gas carbonyl sulfide
(OCS) is the most abundant sulfur gas in the atmosphere.
A missing source in its atmospheric budget is currently sug-
gested, resulting from an upward revision of the vegetation
sink. Tropical oceanic emissions have been proposed to close
the resulting gap in the atmospheric budget. We present a
bottom-up approach including (i) new observations of OCS
in surface waters of the tropical Atlantic, Pacific and Indian
oceans and (ii) a further improved global box model to show
that direct OCS emissions are unlikely to account for the
missing source. The box model suggests an undersaturation
of the surface water with respect to OCS integrated over the
entire tropical ocean area and, further, global annual direct
emissions of OCS well below that suggested by top-down es-
timates. In addition, we discuss the potential of indirect emis-
sion from CS; and dimethylsulfide (DMS) to account for the
gap in the atmospheric budget. This bottom-up estimate of
oceanic emissions has implications for using OCS as a proxy
for global terrestrial CO, uptake, which is currently impeded
by the inadequate quantification of atmospheric OCS sources
and sinks.

1 Introduction

Carbonyl sulfide (OCS) is the most abundant reduced sul-
fur compound in the atmosphere. It enters the atmosphere ei-
ther by direct emissions, e.g., from oceans, wetlands, anoxic
soils or anthropogenic emissions, or indirectly via oxidation
of the short-lived precursor gases dimethylsulfide (DMS) and
carbon disulfide (CS,) (Chin and Davis, 1993; Watts, 2000;
Kettle, 2002). Both precursor gases are naturally produced in
the oceans, and CS; has an additional anthropogenic source
(Kettle, 2002; Stefels et al., 2007; Campbell et al., 2015).
With direct and indirect marine emissions combined, the
ocean is considered as the dominant source of atmospheric
OCS (Chin and Davis, 1993; Watts, 2000; Kettle, 2002). The
most important sink of atmospheric OCS is uptake by ter-
restrial vegetation (Brown and Bell, 1986; Protoschill-Krebs
and Kesselmeier, 1992; Campbell et al., 2008) and oxic soils,
while chemical loss by photolysis and reaction with the hy-
droxyl radical (OH) in the atmosphere are minor loss pro-
cesses (Chin and Davis, 1993; Watts, 2000; Kettle, 2002).
While tropospheric volume mixing ratios show a distinct an-
nual cycle (Montzka et al., 2007), the interannual to decadal
variation is low (Montzka et al., 2007; Kremser et al., 2015).
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Table 1. Missing source estimates derived from top-down ap-
proaches: the listed studies used an increased vegetation sink and an
a priori direct and indirect ocean flux to estimate the magnitude of
the missing source. Assigning the missing source to oceanic emis-
sions results in the total ocean flux listed here. Fluxes are given in
Gg S per year.

A priori  Missing  Total

Reference ocean source  ocean
flux flux

Suntharalingam et al. (2008) 235 230 465
Berry et al. (2013) 276 600 876
Kuai et al. (2015) 289 800 1089
Glatthor et al. (2015) 276 714 992

Accurate accounts of sources and sinks of atmospheric
OCS are crucial for two reasons.

— First, OCS is climate-relevant because it influences the
radiative budget of the Earth as a greenhouse gas and by
contributing significant amounts of sulfur to the strato-
spheric aerosol layer (Crutzen, 1976; Briihl et al., 2012;
Notholt et al., 2003; Turco et al., 1980) that exerts a
cooling effect (Turco et al., 1980; Kremser et al., 2016).
The two opposite effects are currently in balance (Briihl
et al., 2012), but future changes in atmospheric circula-
tion, as well as the magnitude and distribution of OCS
sources and sinks, could change that. Hence, a better
understanding of the tropospheric budget is needed to
predict the effect of OCS in future climate scenarios
(Kremser et al., 2016).

— Second, OCS has recently been suggested as a promis-
ing tool to constrain terrestrial CO, uptake, i.e., gross
primary production (GPP), as it is taken up by plants in
a similar way as CO, (Asaf et al., 2013). GPP, a ma-
jor global CO; flux, can only be inferred from indirect
methods, because the uptake of CO; occurs along with
a concurrent release by respiration. Unlike CO;, OCS is
irreversibly degraded within the leaf. GPP can thus be
estimated based on the uptake ratio of OCS and COa»,
from the leaf to regional scale (Asaf et al., 2013) or
even global scale (Beer et al., 2010), under the condition
that other sources are negligible or well quantified. The
magnitude of terrestrial biogeochemical feedbacks on
climate has been suggested to be similar to that of phys-
ical feedbacks (Arneth et al., 2010). In order to reduce
existing uncertainties, it is thus crucial to better con-
strain single processes in the carbon cycle, especially
GPP.

Nonetheless, current figures for tropospheric OCS sources
and sinks carry large uncertainties (Kremser et al., 2016).
While the budget has been previously considered closed
(Kettle, 2002), a recent upward revision of the vegetation
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sink (Sandoval-Soto et al., 2005; Suntharalingam et al., 2008;
Berry et al., 2013) led to a gap, i.e., a missing source in the at-
mospheric budget of 230-800 Gg S per year (Suntharalingam
et al., 2008; Berry et al., 2013; Kuai et al., 2015; Glatthor
et al., 2015) (Table 1), with the most recent estimates at the
higher end of the range. This revision of vegetation uptake
was suggested to (i) take into account the different deposi-
tion velocities of CO, and OCS within the leaf and base it on
GPP instead of net primary production (Sandoval-Soto et al.,
2005) as well as (ii) to better reproduce observed seasonality
of OCS mixing ratios in several atmospheric models (Berry
et al., 2013; Kuai et al., 2015; Glatthor et al., 2015). Based
on independent top-down approaches using MIPAS (Glatthor
et al., 2015) and TES (Kuai et al., 2015) satellite observa-
tions, FTIR measurements (Wang et al., 2016), and NOAA
ground-based time series stations and the HIPPO aircraft
campaign (Berry et al., 2013; Kuai et al., 2015), the missing
source of OCS was suggested to originate from the (tropi-
cal) ocean, most likely from the region of the Pacific warm
pool. Other potential sources such as advection of air masses
from Asia have been discussed (Glatthor et al., 2015) but not
tested. If the ocean was to account for the missing source, the
total top-down oceanic source strength would then be the a
priori oceanic flux plus the missing source estimate of each
inverse model simulation (Table 1). This addition would im-
ply a 200-380 % increase in the a priori estimated oceanic
source. If oceanic direct and indirect emissions were to ac-
count for the total missing source, an ocean source strength
of 465-1089 Gg S yr—! would be required (Table 1).

OCS and its atmospheric precursors are naturally pro-
duced in the ocean. In the surface open ocean, OCS is present
in the lower picomolar range, and has been measured on nu-
merous cruises in the Atlantic (Ulshofer et al., 1995; Flock
and Andreae, 1996; Ulshofer and Andreae, 1998; von Hobe
et al., 1999), including three latitudinal transects (Kettle
et al., 2001; Xu et al., 2001), the Indian Ocean (Mihalopou-
los et al., 1992), the Pacific Ocean (Weiss et al., 1995a) and
the Southern Ocean (Staubes and Georgii, 1993). Measure-
ments in tropical latitudes, where the missing source is as-
sumed to be located, have previously been performed in the
Indian Ocean (Mihalopoulos et al., 1992) and during the At-
lantic transects (Kettle et al., 2001; Xu et al., 2001). OCS
is produced photochemically from chromophoric dissolved
organic matter (CDOM) (Andreae and Ferek, 2002; Ferek
and Andreae, 1984) and by a not fully understood light-
independent production that has been suggested to be linked
to radical formation (Flock et al., 1997; Pos et al., 1998).
Dissolved OCS is efficiently hydrolyzed to CO; and H,S at
arate depending on pH and temperature (Elliott et al., 1989).
CS, has been measured in the Pacific and Atlantic oceans
in a range of 7.2-27.5 pmol L™! (Xie et al., 1998) and dur-
ing two Atlantic transects (summer and winter) in a range of
4-40 pmol L1 (Xu, 2001). It is produced photochemically
(Xie et al., 1998) and biologically (Xie et al., 1999), and no
significant loss process other than air—sea gas exchange has

www.atmos-chem-phys.net/17/385/2017/



S. T. Lennartz et al.: Oceanic emissions of OCS

Table 2. Global oceanic emission estimates of OCS: direct ocean
emission estimates of OCS from bottom-up approaches. Uncertain-
ties are given in parentheses as in the original paper either as range
or + standard deviation.

Reference Emitted S as OCS
(GgSyr™)

Extrapolated from measurements

Rasmussen et al. (1982) 320 (£160)*

Ferek and Andreae (1983) 245*
Johnson and Harrison (1986) 110-210*
Mihalopoulos et al. (1992) 230 (110-210)*
Chin and Davis (1993) 160 (85-340)*

Weiss et al. (1995b) —16 (—10-30)*
Ulshofer and Andreae (1998) 41-80*
Watts (2000) 53 (£80)*
Xu et al. (2001) 53*
Model simulations

Kettle (2002) 41 (£154)
Launois et al. (2015a) 813 (573-3997)
This study 130 (£80)

* Units deviate from original paper, converted to Gg S for comparison.

been identified (Xie et al., 1998). DMS is present in the lower
nanomolar range in the surface ocean and has been exten-
sively studied in several campaigns, summarized in a clima-
tology by Lana et al. (2011). DMS is biogenically produced
and consumed in the surface ocean, as well as photo-oxidized
and ventilated by air-sea exchange (Stefels et al., 2007).

Available bottom-up estimates of the global oceanic OCS
fluxes from shipboard observations range from —16 to
320 Gg S yr~! (Table 2). However, the highest estimates were
biased, because mainly summertime and daytime observa-
tions of water concentrations were considered. With the dis-
covery of the seasonal oceanic sink of OCS during winter-
time (Ulshofer et al., 1995) and a pronounced diel cycle
(Ferek and Andreae, 1984), direct oceanic emissions were
corrected downwards.

Only recently, OCS emissions have been estimated with
the biogeochemical ocean model NEMO-PISCES (Launois
et al., 2015a) at a magnitude of 813 Gg S yr~!, sufficient to
account for the missing source. This oceanic emission in-
ventory had been used to constrain GPP based on OCS on
a global scale (Launois et al., 2015b). However, the oceanic
OCS photoproduction in the ocean model included a param-
eterization for OCS photoproduction derived from an exper-
iment in the North Sea (Uher and Andreae, 1997b), which
might not be representative for the global ocean, as indicated
by photoproduction constants that were an order of magni-
tude lower in the Atlantic ocean compared to the German
Bight (Uher and Andreae, 1997a).

Here, we present new observations in all three tropical
ocean basins, two of them measured with unprecedented pre-
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cision and time resolution. Direct fluxes were inferred from
continuous OCS measurements in the tropical Pacific and
Indian oceans, covering a range of regimes with respect to
CDOM content, ultraviolet (UV) radiation and sea surface
temperature (SST). These observations are used to further
constrain and validate a biogeochemical box model which
had previously been shown to reproduce OCS concentra-
tion in the Atlantic Ocean reasonably well (von Hobe et al.,
2001). The box model is now updated from its previous
global application (Kettle, 2002) by adding and further de-
veloping the most recent process parameterizations to esti-
mate the global source strength of direct OCS emissions. The
emission estimate is further complemented by discussing the
potential of indirect OCS emissions, i.e., the emissions of
short-lived precursor gases CS; and DMS, to account for the
gap in the budget.

2 Methods
2.1 Study sites

Several cruises were conducted to measure the trace gases
OCS (OASIS, TransPEGASO, ASTRA-OMZ) and CS;
(TransPEGASO, ASTRA-OMZ). Cruise tracks are depicted
in Fig. 1. The OASIS cruise onboard RV SONNE [ to the In-
dian Ocean started from Port Louis, Mauritius, to Malé, Mal-
dives, in July and August 2014, where mainly oligotrophic
waters were encountered. TransPEGASO was an Atlantic
transect starting in Gibraltar and leading to Buenos Aires,
Argentina, and Punta Arenas, Chile. It took place in October
and November 2014 and covered a variety of biogeochemi-
cal regimes. ASTRA-OMZ onboard RV SONNE II started in
Guayaquil, Ecuador, and ended in Antofagasta, Chile, in Oc-
tober 2015. Although 2015 was an El Nifio year, upwelling
together with high biological production was still encoun-
tered during the cruise (Stramma et al., 2016).

2.2 Measurement setup for trace gases

OCS was measured during two cruises onboard the RV
SONNE I (OASIS) and SONNE Il (ASTRA-OMZ) with a
continuous underway system similar to the one described
in Arévalo-Marténez et al. (2013), at a measurement fre-
quency of 1Hz. The system consisted of a Weiss-type
equilibrator, through which seawater is pumped from ap-
proximately 5m below the surface with a flow of 3—
4Lmin~!. The air from the equilibrator headspace was
Nafion-dried and continuously pumped into an OCS ana-
lyzer (model DL-T-100, Los Gatos Research) that uses the
off-axis integrated cavity output spectroscopy (OA-ICOS)
technique. The instrument used onboard is a prototype
of a commercial instrument (www.lgrinc.com/documents/
OCS_Analyzer_Datasheet.pdf), developed by Los Gatos
Research (LGR) in collaboration with Forschungszentrum
Jilich GmbH (Schrade, 2011). Data were averaged over
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Figure 1. Observed OCS water concentrations and calculated emissions: observations of OCS concentrations in the surface ocean during
the three cruises (a) OASIS, (b) ASTRA-OMZ, and (c¢) TransPEGASO as well as the corresponding emissions calculated based on the
concentration gradient between water and marine boundary layer (d—f). Outgassing is indicated in red bars; oceanic uptake in blue bars. The
grey line shows wind speed measured onboard the vessels. Flux data are shown with different scales on the y axes. Data gaps occurred during

stays in port and territorial waters or during instrument tests.

2 min, achieving a precision of 15 ppt. OCS mixing ratios in
the marine boundary layer (MBL) were determined by pump-
ing outside air ca. 50 m from the ship’s deck to the OCS an-
alyzer (KNF Neuberger pump). A measurement cycle con-
sisted of 50 min water sampling and 10 min air sampling,
where the first 3 min after switching until stabilization of the
signal were discarded.

Before and after the cruise the analyzer was calibrated over
a range of concentrations using permeation devices. Both
calibrations were consistent. However, during calibration the
output of the internal spectral retrieval differed significantly
from post-processing of the recorded spectra, which matched
the known concentrations (this offset is not present in the
commercial instruments). The calibration data were thus
used to derive a correction function. After correction all data
stayed within 5 % of the standards. The calibration scale of
the permeation devices was 5 % below the NOAA scale. As
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the OCS analyzer measured CO; simultaneously, and CO»
standards were available during the cruise, drift of the instru-
ment was tested by measuring CO» standard gases before and
after the cruise and found to be less than 1 % of the signal.
Special care was taken to avoid contamination, and all mate-
rials used were tested for contamination before use.

During OASIS, the mirrors inside the cavity of the OCS
analyzer were not completely clean, which led to a reduced
signal. To correct the data, an attenuation factor was deter-
mined from simultaneous CO; measurements, because no
OCS standard was available onboard, and OASIS data were
corrected accordingly.

An independent quality check of the data was performed
by comparing volume mixing ratios of the MBL from the
OCS analyzer with samples from air canisters sampled dur-
ing both cruises and measured independently (Schauffler
et al., 1998; de Gouw et al., 2009). The calibrated (and at-
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tenuation corrected for OASIS) OA-ICOS data were on av-
erage 5 % lower than the air canister samples, which reflects
the 5 % difference between the calibration at Forschungszen-
trum Jiilich and the NOAA scale.

During ASTRA-OMZ, CS, was directly measured on-
board within 1h of collection using a purge and trap sys-
tem attached to a gas chromatograph and mass spectrome-
ter (GC/MS; Agilent 7890A/Agilent 5975C; inert XL MSD
with triple axis detector) running in single-ion mode. The
discrete surface seawater samples (50 mL) were taken each
hour to every 3 h from the same pump system as for contin-
uous OCS measurements. CS; was stripped by purging with
helium (70 mL min~!) for 15 min. The gas stream was dried
using a Nafion membrane dryer (Perma Pure) and CS, was
preconcentrated in a trap cooled with liquid nitrogen. After
heating the trap with hot water, CS, was injected into the
GC/MS. Retention time for CS;y (m/z76, 78) was 4.9 min.
The analyzed data were calibrated each day using gravimet-
rically prepared liquid CS; standards in ethylene glycol. Dur-
ing purging, 500 uL gaseous deuterated DMS (d3-DMS) and
isoprene (d5-isoprene) were added to each sample as an inter-
nal standard to account for possible sensitivity drift between
calibrations.

During the TransPEGASO cruise onboard RV Hesperides,
surface ocean OCS and CS; were measured in discrete sea-
water samples by purge and trap and gas chromatography
with mass spectrometry detection (GC-MSD). Samples were
collected every day at 09:00 and 15:00 local time in glass
bottles without headspace and analyzed within 1 h. Aliquots
of 25 mL were withdrawn with a glass syringe and filtered
through GF/F during injection into the purge and trap system
(Stratum, Teledyne Tekmar). The water was heated to 30 °C
and volatiles were stripped by bubbling with 40 mL min~! of
ultrapure helium for 12 min and trapped in a U-shaped VO-
CARB 9 trap at room temperature. After flash thermal des-
orption, volatiles were injected into an Agilent 5975T LTM
GC-MSD equipped with an Agilent LTM DB-VRX column
(20m x 0.18 mm OD x 1 um) maintained at 30°C. Reten-
tion times for OCS (m/z 60) and CS, (m/z 76) were 1.3 and
2.7 min, respectively. Peak quantification was achieved with
respect to gaseous (OCS in N3) and liquid (CS; in methanol
and water) standards that were analyzed in the same way.
Samples were run in duplicates. Detection limits were 1.8 pM
(OCS) and 1.4 pM (CS3), and precision was typically around
5%.

The systems are each calibrated against a standard, but
they had not been directly intercompared. Still, our measure-
ments are consistent with previous measurements using in-
dependent methods as discussed in Sects. 3.2.1 and 3.3.

2.3 Calculation of air-sea exchange
Fluxes F of all gases were calculated with Eq. (1):

F=ky-AC, (1)
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where ky, is the gas transfer velocity in water (i.e., physical
constraints on exchange) and AC the air—sea concentration
gradient (i.e., the chemical constraint on exchange). The air-
side transfer velocity (Liss and Slater, 1974) for OCS was
calculated to be 7 orders of magnitude smaller and was there-
fore neglected. The concentration gradient was determined
using the temperature dependent Henry constant (De Bruyn
et al., 1995) and the measurements in the surface water and
MBL for OASIS and ASTRA-OMZ. During TransPEGASO,
no atmospheric volume mixing ratio was measured, and a
value of 500 ppt was assumed (Montzka et al., 2007). As
air volume mixing ratios of OCS vary over the course of a
year, we performed a sensitivity test for a scenario of 450
and 550 ppt and found mean deviations of +7.8 and —7.8 %,
respectively. The transfer velocity ky, was determined using a
quadratic parameterization based on wind speed (Nightingale
et al., 2000) which was directly measured onboard (10 min
averages). Furthermore, k, was corrected for OCS and CS;
by scaling it with the Schmidt number calculated from the
molar volume of the gases (Hayduk and Laudie, 1974). It
should be noted that the choice of the parameterization for
kw has a non-negligible influence on the global emission esti-
mate. Linear, quadratic and cubic parameterizations of k, are
available, with differences increasing at high wind speeds on
the order of a factor of 2 (Lennartz et al., 2015; Wanninkhof
et al., 2009). Evidence suggests that the air—sea exchange of
insoluble gases such as CO;,, OCS and CS; follows a cu-
bic relationship to wind speed because of bubble-mediated
gas transfer (McGillis et al., 2001; Asher and Wanninkhof,
1998). However, this difference between soluble and non-
soluble gases is not always consistent (Miller et al., 2009),
and too few data are available for a reliable parameterization
at high wind speeds above 12m s ™!, where the cubic and the
quadratic parameterizations diverge the most. For reasons of
consistency, e.g., for the fitted photoproduction p from pre-
vious studies, and the fact that most of the previous emission
estimates were computed using a quadratic k,, parameteri-
zation, we chose the same quadratic parameterization repre-
senting the mean range of observations (Nightingale et al.,
2000). For a sensitivity test, we computed the global oceanic
emission with a cubic relationship (McGillis et al., 2001),
which results in an additional 40 GgS per year as direct
OCS emissions, leaving the missing source still unexplained.
However, better constraints on the transfer velocity of insol-
uble gases would decrease the uncertainty in global oceanic
emissions of marine trace gases.

Atmos. Chem. Phys., 17, 385-402, 2017
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2.4 Box model of OCS concentration in the surface
ocean

A box model to simulate surface concentration of OCS is
further developed from the latest version from von Hobe
et al. (2003, termed vH2003), where concentrations along the
tracks of five Atlantic cruises have been simulated and com-
pared. The vH2003 model results from successful tests and
validation to observations on several cruises to the Atlantic
Ocean covering all seasons (i.e., Flock and Andreae, 1996,
in January 1994; Uher and Andreae, 1997a, in April/May
1992; von Hobe et al., 1999, in June/July 1997; Kettle et al.,
2001, in September/October 1998). By comparing photopro-
duction rate constants of the five cruises to CDOM absorp-
tion, von Hobe et al. (2003) suggest a second-order process
for photoproduction with the photoproduction rate constant
being dependent on the absorption of CDOM in seawater.

In our approach, we test vH2003 along the cruise track
of two cruises, include a new way of determining the pho-
toproduction rate constant (see below) and apply it with
global climatological input (termed L2016). Kettle (2000,
2002, termed K2000) applied a similar version of vH2003
globally, which included an optimized photoproduction con-
stant from Atlantic transect cruise data, an optimized con-
stant light-independent production and a linear regression to
obtain CDOM from chlorophyll a. In comparison to K2000,
we use (i) a new way of determining the photoproduction rate
constant incorporating information from three ocean basins,
(ii) the most recent parameterization of light-independent
production available, and (iii) satellite observations for sea
surface CDOM instead of an empirical relationship based on
chlorophyll a.

Launois et al. (2015a) implemented parameterizations
for light-independent production, hydrolysis and air—sea ex-
change similar to vH2003 in the 3-D global ocean model
NEMO-PISCES. The main differences to the approach used
here are the lack of accounting for mixing in L2016 (dis-
cussed in Sect. 3.2.2, which will theoretically lead to higher
simulated concentrations in our case) and the application of a
photoproduction rate constant in our model that incorporates
information from three open ocean basins in contrast to one
from a study in the North Sea (Launois et al., 2015a).

In L2016, the light-independent production term of OCS
was parameterized depending on SST (K) and the absorption
coefficient of CDOM at 350 nm wavelength, a3so (von Hobe
etal., 2001) (Eq. 2).

dCocs
dt

2

6 16200
=azso x 107° xexp | 55.8 —

SST

An overview on symbols and abbreviations used in equations
in the following is provided in the Appendix. The parameter-
ization for hydrolysis describes alkaline and acidic degrada-
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tion of OCS by Reactions (R1) and (R2):

OCS + H,0 — HyS + CO,, (R1)
OCS +OH™ — SH™ + CO». (R2)

It was parameterized as a first-order kinetic reaction includ-
ing the rate constant kp according to Eqgs. (3)-(5):

dC
o =10CS] -y, 3)
10450 6040 K
kiy = 243 —— g2 2
h exP( SST )+6Xp( SST) alH+]’
3046.7
—log|pK = +3.7685 4 0.0035486 - +/SSS, 5)

where a[ H] is the proton activity and K the ion product of
seawater (Dickinson and Riley, 1979).

Fluxes were calculated with Eq. (1) using the same pa-
rameterization for ky as for the emission calculation from
measurements described above.

Photoproduction was integrated over the mixed layer
depth (MLD), assuming a constant concentration of OCS and
CDOM throughout the mixed layer, with the photoproduc-
tion rate constant p (molJ™1), azso (m~!) and UV radiation
(W m~2) (Sikorski and Zika, 1993) (Eq. 6).

0
dCocs

dr

pazsoUVdz (6)
_MLD

MLD was obtained from CTD (conductivity, temperature,
depth) profiles and interpolated between these locations
(Figs. S1, S2 in the Supplement). The photochemically active
radiation that reaches the ocean surface was approximated by
Eq. (7) (Najjar et al., 1995):

UV =2.85x 107*. I - cos?6, (7

with global radiation 7 (W m~2) and the zenith angle cos 6.
The attenuated UV light intensity directly below the surface
(Sikorski and Zika, 1993) down to the respective depth of the
mixed layer was calculated in 1 m steps, taking into account
attenuation by CDOM and pure seawater. As a simplification
in this global approach, the box model did not resolve the
whole wavelength spectrum, but rather used a35o and applied
a photoproduction rate constant that takes into account the
integrated spectrum. A similar approach had been tested and
compared to a wavelength spectrum resolving version by von
Hobe et al. (2003).

The rate coefficients for hydrolysis, light-independent pro-
duction and air-sea exchange are all reasonably well con-
strained and parameterizations have been derived from ded-
icated laboratory and field experiments (hydrolysis, air—
sea exchange) or from nighttime OCS observations in
several regions assuming steady state (dark production;
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Figure 2. Box model simulations compared to observations: comparison of simulated OCS water concentrations against measurements
from the OASIS cruise to the Indian Ocean (a) and the eastern Pacific Ocean during the ASTRA-OMZ cruise (b). Blue indicates OCS
concentrations with a least-squares fit for the photoproduction rate constant p during daylight, fitted individually for days with homogeneous
water masses (SST, azsp). Black shows the simulation including the p depending on a35(, obtained from linear regression of individually
fitted p with azsg (r = 0.71). The time on the x axis is local time (GMT+-5 during OASIS 2014, GMT—4 during ASTRA-OMZ 2015).
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von Hobe et al., 2001). However, the photoproduction rate
constant p is not well constrained and no generally applica-
ble parameterization exists. In the study of von Hobe et al.
(2003), a start was made in parameterizing p in terms of
CDOM absorption, and they found this to be dependent on
the exact model setup used with respect to wavelength inte-
gration and mixed layer treatment. To extend the p—CDOM
relationship for other ocean basins, we use the two cruises
OASIS and ASTRA-OMZ as case studies for parameter op-
timization of the photoproduction rate constant p. The pho-
toproduction constant p in the case study simulations was fit-
ted individually for periods of daylight > 100 W m~2 (Fig. 2,
blue lines) with a Levenberg—Marquardt optimization rou-
tine in MatLab version 2015a (8.5.0) by minimizing resid-
uals between simulated and hourly averaged measurements.
Different starting values were tested to reduce the risk of the
fitted p being a local minimum. Together with photoproduc-
tion rate constants obtained by a similar optimization pro-
cedure by von Hobe et al. (2003) (Table 2 therein, termed
MLB STC), a relationship of the photoproduction constant
p dependent on a3so was established (Fig. 3). The resulting
linear relationship thus includes values from the Atlantic, Pa-
cific and Indian oceans, making it a good approximation for
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a globally valid dependence. For the global box model, p
was calculated in every time step based on this relationship
(r=0.71, Eq. 8):

p =3591.3 a350+329.4 ()

The scatter in Fig. 3 likely reflects the inhomogeneity of the
water masses across the three oceanic basins considered, as
CDOM absorbance is a valid proxy, but carries some uncer-
tainty in the concentration of the actual precursor.

The model input for simulations of the cruises OASIS
and ASTRA-OMZ consisted of measurements made during
the respective cruise, including SST and SSS (MicroCAT
SBE41) measured every minute, CDOM absorption coeffi-
cient (spectrophotometrically measured ca. every 3 h with a
liquid capillary cell setup) and the ship’s in situ measured
meteorological data such as wind speed and global radiation
averaged over 10 min (Figs. S1, S2, Tables S1, S2). Forcing
data were linearly interpolated to the time step of integration
of 2 min.

For the global box model, monthly global meteorological
fields with a spatial resolution of 2.8° x 2.8° were used (Ta-
ble S3, Fig. S3). For global azsg at the sea surface, monthly
climatological means for absorption due to gelbstoff and de-
tritus as43 (gelbstoff representing CDOM) from the MODIS-
Aqua satellite (all available data, 2002-2014) (NASA, 2014)
were corrected to 350 nm with Eq. (9) (Fichot and Miller,
2010; Launois et al., 2015a):

a3s50 = ass - exp(—0.02 - (350 — 443)). 9)

SST, wind speed, and atmospheric pressure were obtained
as monthly climatological means from the same period, i.e.,
2002 to 2014, by ERA-Interim (Dee et al., 2011). A diel cy-
cle of global radiation I was obtained by fitting the para-
ble parameters a and b during time of the day ¢ in Eq. (10)
(Fig. S4),

I=—a-t*+b, (10)

to conditions of (i) x axis interceptions in the distance of the
sunshine duration and (ii) the integral being the daily incom-
ing energy by ERA-Interim (Dee et al., 2011). Monthly cli-
matologies of mixed layer depths were used from the MI-
MOC project (Schmidtko et al., 2013). For details of data
sources please refer to Tables S1-S3 provided in the Supple-
ment. The time step of the model was set to 120 min, which
had been tested to result in negligible (< 3 %) smoothing.

2.5 Assessing the indirect contribution of DMS with
EMAC

Model outputs from ECHAM/MESSy Atmospheric Chem-
istry (EMAC) from the simulation RC1SDbase-10a of the
ESCiMo project (Jockel et al., 2016) are used to evaluate
the contribution of DMS on the production of OCS. The
model results were obtained with ECHAMS version 5.3.02
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and MESSy version 2.51, with a T42L90MA resolution (cor-
responding to a quadratic Gaussian grid of approx. 2.8 by
2.8° in latitude and longitude and 90 vertical hybrid pressure
levels up to 0.01 hPa). The dynamics of the general circula-
tion model were nudged by Newtonian relaxation towards
ERA-Interim reanalysis data. DMS emissions were calcu-
lated with the AIRSEA submodel (Pozzer et al., 2006), which
takes into account concentration of DMS in the atmosphere
and in the ocean, following a two-layer conceptual model
to calculate emissions (Liss and Slater, 1974). While atmo-
spheric concentrations are estimated online by the model
(with DMS oxidation), the oceanic concentrations are pre-
scribed as monthly climatologies (Lana et al., 2011). It was
shown that such an online calculation of emissions provides
the most realistic results when compared to measurements
compared to a fixed emission rate (Lennartz et al., 2015). The
online-calculated concentrations of DMS and OH were been
used to estimate the production of OCS. A production yield
of 0.7 % was used for the reaction of DMS with OH (Barnes
etal., 1994), using the reaction rate constant suggested by the
International Union of Pure and Applied Chemistry (IUPAC)
(Atkinson et al., 2004).

3 Results and discussion
3.1 Observations of OCS in the tropical ocean

OCS was measured in the surface ocean and MBL during
three cruises in the tropics. Measurement locations (Fig. 1)
include oligotrophic open ocean regions in the Indian Ocean
(OASIS, 07-08/2014), open ocean and shelf areas in the
eastern Pacific (ASTRA-OMZ, 10/2015) and a meridional
transect in the Atlantic (TransPEGASO, 10-11/2014). In the
Indian and Pacific oceans, continuous underway measure-
ments provided the necessary temporal resolution to observe
diel cycles of OCS concentrations in surface water. Dis-
solved OCS concentrations exhibited diel cycles with max-
ima 2 to 4h after local noon (Fig. 1), which are a conse-
quence of photochemical production and removal by hydrol-
ysis (Uher and Andreae, 1997a). OCS concentrations also
varied spatially. Taking azsg as a proxy for CDOM con-
tent, we found that daily mean OCS concentrations were
higher in CDOM-rich (Table 3, 28.3 & 19.7 pmol OCS L1,
asso: 0.15+0.03m™1) than in CDOM-poor waters (Table 3,
OASIS: 9.1+3.5pmol OCSL™!, a3so: 0.03£0.02m™1).
Samples during TransPEGASO were measured with gas
chromatography—mass spectrometry twice a day (around
08:00-10:00 and 15:00-17:00 local times). Therefore, the
full diel cycles could not be reconstructed and potential vari-
ations of OCS with CDOM absorption were overlaid by diel
variations. Nevertheless, the observed range of OCS con-
centrations in the Atlantic corresponds well to the observa-
tions from the eastern Pacific and Indian Ocean (Table 3)
and is consistent with measurements from a previous Atlantic
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Table 3. Average, standard deviation and range of parameters observed during the cruises OASIS (Indian Ocean, 2014), ASTRA-OMZ
(Pacific Ocean, 2015) and TransPEGASO (Atlantic Ocean, 2014).

Average (£SD) Minimum Maximum
OASIS (Indian Ocean)
OCS sea surface concentration (pmol L_l) 9.1 (£3.5) 5.1 20.7
OCS flux (gSd~'km2) —0.25 (£0.5) -16 1.5
SST °O) 27.0 (£1.4) 22.2 32.0
Salinity =) 34.9 (£0.3) 34.3 354
Wind speed (m sfl) 7.6 (£2.1) 0.2 14.5
acpom(350) (m™ 1 0.03 (£0.02) n.d. 0.12
ASTRA-OMZ (Pacific Ocean)
OCS sea surface concentration (pmol L_l) 28.3 (£19.7) 6.5 133.8
OCS flux (gSd~! km™2) 1.5 (£2.1) -15 19.9
CS; sea surface concentration (prnolL_l) 17.8 (£8.9) 6.7 40.1
CS, flux (gSd~km™2) 4.1 (£3.2) 0.2 14.4
SST °0) 20.1 (£2.9) 15.6 26.9
Salinity ) 35.0 (£0.43) 334 35.5
Wind speed (m s_l) 7.4 (£2.0) 0.3 15.5
acpom(350) (m™ 1 0.15 (£0.03) 0.1 0.24
TransPEGASO (Atlantic Ocean)
OCS sea surface concentration (pmol L_l) 23.6 (£19.3) 2.6 78.3
OCS flux (gS d—h 1.3 (£3.5) —1.7 14.0
CS; sea surface concentration (pmol Lfl) 62.5 (£42.1) 23.2 154.8
CS, flux (gSd~! km=2) 13.7 (£9.8) 0.3 33.9
SST °O) 22.6 (£6.3) 7.1 29.6
Salinity =) 34.9 (£2.6) 28.4 38.1
Wind speed (ms~1 7.4 (£3.1) 0.4 19.0
acpom(350) (m~1 0.13 (£0.11) 0.0023 0.45

meridional transect (AMT-7) cruise (Kettle et al., 2001) (1.3-
112.0 pmol OCSL~!, mean 21.7 pmol OCSL™1).

Air—sea fluxes calculated from surface concentrations and
mixing ratios of OCS as a function of wind speed gener-
ally follow the diel cycle of the surface ocean concentration.
While supersaturation prevailed during the day, low night-
time concentrations usually led to oceanic uptake of atmo-
spheric OCS. OCS fluxes integrated over one day ranged
from —0.024 to —0.0002 g Skm~2 in the open Indian Ocean
and from 0.38 to 2.7 g Skm™2 in the coastal Pacific. During
the observed periods, the ocean was a net sink of atmospheric
OCS in the Indian Ocean, whereas it was a net source in the
eastern Pacific. Although an assessment of net flux is dif-
ficult given the lower temporal resolution during TransPE-
GASO, calculated emissions were in the same range as the
ones measured in the Pacific and Indian Ocean.

The water masses encountered during the cruises to the
Indian Ocean (OASIS) and eastern Pacific (ASTRA-OMZ),
which are used to constrain the global box model, differ con-
siderably with respect to the properties relevant for OCS cy-
cling and, thus, span a large range of possible OCS variabil-
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ity. The properties encountered during these two cruises en-
compass or exceed the ones of the Pacific warm pool (cli-
matological averages, Table 4), which is where the location
of the missing source has been hypothesized (Glatthor et al.,
2015; Kuai et al., 2015). Both higher SST and lower wind
speeds (Table 4) would decrease the OCS sea surface con-
centrations in the ocean, leading to decreased emissions to
the atmosphere: higher SSTs favor a stronger degradation by
hydrolysis (Elliott et al., 1989), and lower wind speeds de-
crease the transfer velocity k. Lower integrated daily radia-
tion (SR in Table 4) in the Pacific warm pool also points to
lower OCS production. Hence, our new OCS observations
presented here likely span the range of emission variability
in the tropics.

The observed concentrations and calculated emissions are
approximately 1 order of magnitude lower than the annual
mean surface concentrations and emissions simulated in the
3-D global ocean model NEMO-PISCES (Launois et al.,
2015a).
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Table 4. Comparison of water properties relevant for OCS production and consumption for the cruises OASIS (Indian Ocean, July—
August 2014) and ASTRA-OMZ (eastern Pacific, October—November 2015) with the assumed source region in the Pacific warm pool
(15°N-15° S, 120-180° E). Data from cruises are in situ measurements; the data for the Pacific warm pool were extracted from climatolog-
ical monthly means from sources for the global model run as specified in the Supplement.

Parameter OASIS ASTRA-OMZ Pacific warm pool
SST (°C) 27.0+£1.0 19.6+2.6 28.940.9
SSS (gkg™) 35.0+0.3 35.1+£0.3 34.5+0.42
Wind speed (ms~1) 82417 75+1.8 53+04
azsp (m™1) 0.039 £0.02 0.146 £0.02 0.050 4+ 0.08
I (Wm™2) 226.5+303.0 196.4 +283.1 206.4 + 286.62
SR Im™2) 19x 107 £1.7x10° 1.6x 107 £4.5x10° 8.9 x 100 +£1.3 x 10°
pH (0 8.03+0.01 -b 8.07+0.01
MLD (m) 433+15.8 189475 35.9+14.1

2 Calculated from an annual mean diurnal cycle based on ERA-Interim sunshine duration and flux. SR: surface radiation, daily

integral. b Assumed pH =8.15 for box model simulation.

3.2 A direct global oceanic emission estimate for OCS

The OCS observations from the Indian and Pacific Ocean
were used to improve a box model for simulating OCS con-
centrations in the surface ocean (Kettle, 2002; Uher and
Andreae, 1997b; von Hobe et al., 2003). With the a3zsg-
dependent photoproduction constant included, the model re-
produced the diel pattern of OCS concentrations in the sur-
face oceans for both cruises (Fig. 2, black lines). A slight
overestimation of observed concentrations is present for
the Indian Ocean cruise OASIS (observed mean concentra-
tion: 9.143.5pmolL~"; simulated: 10.8 4 3.9 pmol L™1).
This overestimation was more pronounced in the eastern
Pacific (observed mean: 28.3419.7 pmolL’l; simulated:
47.3 £25.4pmol L™!) and can largely be attributed to a lack
of downward mixing inherent in the mixed layer box model
due to the assumption of the OCS concentration being con-
stant throughout the entire mixed layer.

Using the linear p —asso parameterization for the first time
in a global model, the same box model as for the case studies
is applied to estimate sea surface concentrations and fluxes
of OCS on a global scale (Fig. 4). The OCS production is
consistent with the global distribution of CDOM absorption
(Fig. S5), with highest concentrations calculated for coastal
regions and higher latitudes. Despite the photochemical hot
spot in the tropics (30° N-30° S), degradation by hydrolysis
prevents any accumulation of OCS in the surface water, as
we calculated the lifetime due to hydrolysis to be only 7h
(Fig. S5). The simulated range of water concentrations is too
low to sustain emissions in the tropics that could close the at-
mospheric budget of OCS (Fig. 4). With saturation ratios in-
tegrated over 1 year, the tropical ocean (30° N-30° S) is even
undersaturated with respect to OCS, taking up 3.0 Gg Syr—!.
Globally, the integration over one year yields annual oceanic
OCS emissions of 130 Gg S. Our results corroborate the up-
per limit of an earlier study that used an observation-derived
emission inventory (Table 1) (Kettle, 2002) but which in-
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Figure 4. Annual mean of surface ocean concentrations of OCS
simulated with the box model (a) and corresponding emissions (b).

cludes more process-oriented parameterizations as described
in Sect. 2.4. Clearly, our results from both observations and
modeling contradict the latest bottom-up emission estimate
from the NEMO-PISCES model (Launois et al., 2015a), and
do not support a hot spot of direct OCS emissions in the Pa-
cific Warm Pool or the tropical oceans in general.

3.2.1 Comparison to previous ship-based
measurements

The global simulation of OCS surface water concentrations
generally reproduced the lower picomolar range of concen-
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Table 5. Comparison of previous ship campaign measurements with corresponding month and approximate geolocation from the global box
model in this study (L2016), taken either from figures or tables as provided in the original references. Note that the box model is based on
input data from climatological means that do not fully represent the conditions encountered during the respective cruises. Only observational
data with measurements of the full diel cycle were included for comparison. n: number of measurements.

References Season Region Mean OCS £ SD n L2016 mean
(pmol L1 (pmol L1
Mihalopoulos et al. (1992) open Indian Ocean
20°N-37°S
Mar/May 1986  OCEAT II 19.9+0.52 20 11.2+6.3
Jul 1987 OCEAT 1II 19.9+1.02 14 17.7£13.1
Staubes and Georgii (1993) Nov-Dec 1990  Weddell Sea 1090 126 66.6 =49.8
40-72° S,72° W-24°E
Ulshofer et al. (1995) North Atlantic Ocean
Apr/May 1992  47°N20°W 149+£69 118 428+113
Jan 1994 48-50° N, 10-17° W 53+£1.6 120 8.9+3.2
Sep 1994 48-50° N, 10-17° W 19.0£83 235 33.4+£35
Flock and Andreae (1996) Jan 1994 northeastern Atlantic Ocean 6.7 (4-11) 120 9.6+3.7
49°N, 12°W
Ulshofer and Andreae (1998) Mar 1995 western Atlantic 8.1+7.0 323 15.8
32°N, 64° W
von Hobe et al. (1999) Jun/Jul 1997 northeastern Atlantic Ocean 23.6+16.0 940 30.5+12.6
30-40°N, 8-15°W
Kettle et al. (2001) Sep/Oct 1998 Atlantic transect 21.74+£19.1 783 229432
50° N-60° S, 1-64° W
von Hobe et al. (2001) Aug 1999 Sargasso Sea/BATS 8.6+2.8 518 8.1
32°N, 64° W
Xu et al. (2001) Oct/Nov 1997 Atlantic meridional transect 148+11.4 306 11.8+12.7
53°N-34° S, 25° W-20° E
May/Jun 1998  Atlantic meridional transect 18.1£16.1 440 27.8+47.9

53°N-34° S, 25° W-20°E

2 Converted from ng L~! with a molar mass of OCS of 60.07 g. b Converted from ngS L~ with a molar mass of S of 32.1 g.

trations (Table 5), the seasonal pattern of higher concentra-
tions during summer compared to winter (as, for example, in
Ulshofer et al., 1995) and the spatial pattern of higher con-
centrations in higher latitudes (e.g., Southern Ocean; Staubes
and Georgii, 1993). Given that monthly means of a model
simulation driven by climatological data of the input pa-
rameters are compared to cruise measurements, the absolute
mean deviation of 6.9 pmol L' and the mean deviation of
3.7 pmol L~! indicate an overall good reproduction of obser-
vations (differences between observation and model output
were weighted to the number of observations in Table 4). It
should be noted that, on average, the model overestimates
OCS concentrations as indicated by the positive mean error,
suggesting our emission estimate to be an upper limit to di-
rect oceanic OCS emissions in most regions. The largest de-
viations from observations are found in the Southern Ocean
(see Staubes and Georgii, 1993, in Table 4), where the model
underestimated observations by 40 %. While there are several
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explanations for this, i.e., a possible violation of the under-
lying assumption of a constant OCS production in regions
with deep mixed layers such as the Southern Ocean, or the
missing satellite data for CDOM during polar nights, it is a
clear indication of the need for more observations from high
latitudes. However, this underestimation does not interfere
with our conclusion drawn for the tropical oceans, where the
location of the missing source is derived from top-down ap-
proaches.

3.2.2 Uncertainties

Simulated concentrations and fluxes carry uncertainties from
input parameters and process parameterizations. One major
uncertainty associated with the mixed layer box model ap-
proach arises from the fact that it does not adequately ac-
count for downward mixing and vertical concentration gra-
dients within the mixed layer. Under most circumstances,
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and especially in the tropical open ocean, where hydrolysis
greatly exceeds surface outgassing and low a3s50 makes pho-
toproduction extend further down in the water column, the
model tends to overestimate the real OCS concentrations, as
was shown for our two cruises above. Therefore, we deem
the fluxes from our global simulation to represent an upper
limit of the true fluxes. Only at high latitudes would we ex-
pect more complex uncertainties, because hydrolysis at low
temperatures is slow and only photoproduction and loss by
outgassing are directly competing at the very surface.

Other uncertainties are associated with the calculation of
the photoproduction rate. The wavelength of 443 nm com-
bines the absorption of detritus and CDOM, which could
have an impact especially in river plumes, where terrestrial
material is transported into the ocean. As it is the CDOM
that is important for photochemistry, assuming the 443 nm
is purely CDOM would lead to an overestimation of photo-
production and therefore is a conservative estimate. It should
also be noted that a single spectral slope from 443 to 350 nm
in the global simulation is a simplification. Furthermore, us-
ing a wavelength integrated photoproduction rate constant in-
stead of a wavelength-resolved approach, which would take
global variations in the CDOM and light spectra into ac-
count, is an additional simplification. It has been shown that
this does not lead to large differences regionally (von Hobe
et al., 2003) but could, potentially, lead to variations glob-
ally. Our p—CDOM relationship is a first step for constrain-
ing this variability globally in one parameterization, as it in-
corporates photoproduction rate constants optimized to ob-
servations and thus accounting for differences in the light
and CDOM spectra. More data from different regions can
help to further constrain this relationship in future studies.
Despite these simplifications, the simulated concentrations
agree very well with previous observations (n > 4000, Ta-
ble 4). To test the sensitivity of our box model to the pho-
toproduction rate constant, we performed a sensitivity test
with a photoproduction increased by a factor of 5 in the trop-
ical region (30° N-30° S; note that this factor is considerably
larger than the uncertainty in the p—CDOM relationship).
This leads to an annual mean concentration of 35.1 pmol L ™!
in the tropics (30° N=30° S), resulting in tropical direct emis-
sions of 160 Gg S as OCS per year. The efficient hydrolysis in
warm tropical waters prevents OCS concentrations from ac-
cumulating despite the high photoproduction and still results
in emissions too low to account for the missing source.

With a mean error of 3.7 pmol L™ in the OCS surface wa-
ter concentrations added to (subtracted from) the modeled
concentration and subsequent calculation of fluxes using an-
nual climatologies for wind, pressure and SST (same data
sources as global simulation forcing data), we calculate an
uncertainty of 60 %, which translates into a total uncertainty

in the integrated global flux of 80 Gg S yr~!.
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Figure 5. Measured concentration of CS, in surface waters during
(a) ASTRA-OMZ in the eastern Pacific Ocean and (b) TransPE-
GASO in the Atlantic Ocean.

3.3 Indirect OCS emissions by DMS and CS;

A significant contribution to the OCS budget in the atmo-
sphere results from oceanic emissions of DMS and CS; that
are partially converted to OCS on timescales of hours to days
(Chin and Davis, 1993; Watts, 2000; Kettle, 2002). A yield
of 0.7 % for OCS is used for the reaction of DMS with OH
(Barnes et al., 1994), which results in a global oceanic source
of DMS from OCS of 80 (65-110)GgSyr~! based on the
procedure described in Sect. 2.5. The uncertainty range of
65-110Gg S yr~! originated from the uncertainty in oceanic
emissions, not the conversion factor. This conversion fac-
tor is much more uncertain, as the formation of OCS from
DMS involves a complex multi-step reaction mechanism that
is not fully understood. It has been shown in laboratory ex-
periments that the presence of NO, reduces the OCS yield
considerably (Arsene et al., 2001), which would make our
indirect emission estimate an upper limit. However, the yield
was measured under laboratory conditions and may be dif-
ferent and more variable under natural conditions.

DMS emissions do not show a pronounced hot spot in
the Pacific warm pool region, but as DMS transports much
more sulfur across the air—sea interface than OCS, even low
changes in the OCS yield could affect the atmospheric budget
of OCS. As the spatial oceanic emission pattern of DMS does
not reflect the spatial pattern of the assumed missing source,
a locally specific tropospheric change in the conversion yield
would be one potential way of bringing the patterns in agree-
ment. While it is possible that the OCS yield could vary un-
der certain conditions (e.g., it cannot be excluded that the low
OH concentrations in the broader Pacific warm pool area as
suggested by Rex et al., 2014, influence the yield), the (lo-
cal) increase in the conversion factor would need to be on the
order of a factor of 10-100.

For CS,, the atmospheric reaction pathway producing
OCS is better understood with a well-constrained molar
conversion ratio of 0.81 (Chin and Davis, 1993). However,
the global distribution of oceanic CS; concentration, and
hence its emissions to the atmosphere, is poorly known.
In our study, surface CS, concentrations (Fig. S6) were
on average 17.8 +8.9 pmol L' during ASTRA-OMZ, and
62.5+42.1 pmol L~! during TransPEGASO (Table 3). The
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latter values are higher than previously reported concentra-
tions from the AMT-7 cruise in the central Atlantic (Ket-
tle et al., 2001) (10.9 + 15.2pm01L_1). We extrapolate a
weighted mean of the CS; emissions from TransPEGASO
(n=42,13.7£9.8¢gSd ' km™2), ASTRA-OMZ (n = 122,
414+32gSd 'km?) and AMT-7 (Kettle et al., 2001)
(n=744,1.6+1.8¢gS d-! km_z) in order to estimate CSj-
derived OCS emissions from the global ocean. According
to our extrapolation, 135 (7-260) Gg S yr~! enters the atmo-
sphere as oceanic CS; emissions converted to OCS. The un-
certainty range of 7-260Gg S yr~! results from extrapolat-
ing the highest and the lowest emissions encountered dur-
ing the cruises to the global ocean. This number is at the
highest end of the range for OCS emissions from globally
simulated CS, oceanic concentrations (Kettle, 2000, 2002),
as measured CS, concentrations from the cruises ASTRA-
OMZ and TransPEGASO are higher than the simulated sur-
face concentrations in Kettle (2000) for the respective month.
However, the spatial pattern of higher concentrations and
emissions in the tropical region in our measurements agrees
well with the spatial pattern simulated in Kettle (2000).
Nonetheless, even the extrapolation of the highest measure-
ment would not close the budget for the three largest missing
source estimates (Table 1).

For oceanic emission estimates used to constrain GPP,
quantifying the seasonal cycle of the single contributors is
essential. For example, high emissions during oceanic spring
and fall blooms could mask OCS uptake by the terrestrial
vegetation, and therefore neglecting them could lead to an
underestimation of global GPP, with implications for the at-
mospheric and terrestrial carbon budget.

4 Conclusions and outlook

Considering the observational evidence and the modeled
global emission estimate of 1304 80Gg S yr~!, direct OCS
emissions from the oceans are too low to account for the
missing atmospheric source. Together with indirect emis-
sions, the oceanic source strength of OCS would add up
to 345GgSyr~!, compared to the 465-1089 GgSyr~! re-
quired to balance the suggested increase in vegetation up-
take. Direct and even additional indirect oceanic emissions
of OCS are thus unlikely to balance the budget after the up-
ward revision of the vegetation sink. Largest uncertainties are
associated with the indirect emission estimates, especially in
the conversion of DMS to OCS and the global source strength
of CS,.

As our study suggests, the search for an additional source
of OCS to the atmosphere should include other sources than
oceanic emissions alone. There are indications of other parts
of the OCS budget being underestimated, such as domes-
tic coal combustion (Du et al., 2016). Emissions of biomass
burning and direct and indirect anthropogenic emissions have
been considered in previous estimates (e.g., 315.5GgSyr~!
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in Berry et al., 2013, 224 Gg Syr—! in Kuai et al., 2015, and
219GgS yr_1 in Glatthor et al., 2015), but a recent anthro-
pogenic emission estimate by Lee and Brimblecombe (2016)
increases this number to 598 Gg S yr~!, which would already
bring sources and sinks closer to agreement. They attribute
the largest direct OCS emissions to biomass and biofuel
burning, as well as pulp and paper manufacturing, and the
largest CS» emissions to the rayon industry. Hence, a hot spot
of anthropogenic emissions in the Asian continent might be
a potential candidate, together with atmospheric transport, to
produce atmospheric mixing ratios as observed by satellite.

A redistribution of the magnitude and seasonality of
known sources and sinks could also bring top-down and
bottom-up estimates closer together. For example, the gen-
eral view of oxic soils as a sink for OCS has recently been
challenged. Field (Maseyk et al., 2014; Billesbach et al.,
2014) and incubation studies (Whelan et al., 2016) show
that some oxic soils may shift from OCS uptake to emis-
sion depending on the temperature and water content. Fur-
thermore, it has been speculated previously that vegetation
uptake might not be solely responsible for the decrease in
OCS mixing ratios in fall because of the temporal lag be-
tween CO; and OCS minimum (Montzka et al., 2007). The
observed seasonality in mixing ratios is a superposition of the
seasonality of all individual sources and sinks. These season-
alities are currently neglected or associated with a consider-
able uncertainty. An improved understanding of the season-
ality of the individual sources and sinks could help to better
constrain the gap in the atmospheric budget. First steps to re-
solve OCS seasonality in sources and sinks are currently be-
ing undertaken, e.g., in the case of anthropogenic emissions
(Campbell et al., 2015).

All in all, better constraints on the seasonality and magni-
tude of the atmospheric OCS sources and sinks are critical
for a better assessment of the role of this compound in cli-
mate and its application to quantify GPP on a global scale.
This study confirms oceanic emission as the largest known
single source of atmospheric OCS but shows that its magni-
tude is unlikely to balance the gap in the atmospheric OCS
budget.

5 Data availability

All data, including OCS and CS; measurements in sea water
and the marine boundary layer, as well as OCS model output,
are available upon request from the authors (correspondence
to S. T. Lennartz, slennartz@geomar.de or C.A. Marandino,
cmarandino @ geomar.de).
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Appendix A: List of parameters
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Symbol/abbreviation

Meaning

asso

uio
uv

absorption coefficient of CDOM at 350 nm
fitted parameter in diurnal cycle of /

fitted parameter in diurnal cycle of 1
concentration in air

concentration of OCS in water

gas flux

Henry constant

downwelling solar radiation

ion product of seawater

water-side transfer velocity in air—sea gas exchange
mixed layer depth

photoproduction rate constant

sea surface salinity

sea surface temperature

Schmidt number

time

zenith angle

wind speed at 10 m height

ultraviolet radiation

depth
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