001     825967
005     20210129225502.0
024 7 _ |2 doi
|a 10.1063/1.4964122
024 7 _ |2 ISSN
|a 0003-6951
024 7 _ |2 ISSN
|a 1077-3118
024 7 _ |2 WOS
|a WOS:000386152800065
024 7 _ |2 Handle
|a 2128/17276
024 7 _ |a altmetric:9803347
|2 altmetric
037 _ _ |a FZJ-2017-00239
082 _ _ |a 530
100 1 _ |0 P:(DE-HGF)0
|a Verbiest, G. J.
|b 0
|e Corresponding author
245 _ _ |a Tunable mechanical coupling between driven microelectromechanical resonators
260 _ _ |a Melville, NY
|b American Inst. of Physics
|c 2016
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1484209511_29821
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a We present a microelectromechanical system, in which a silicon beam is attached to a comb-drive actuator, which is used to tune the tension in the silicon beam and thus its resonance frequency. By measuring the resonance frequencies of the system, we show that the comb-drive actuator and the silicon beam behave as two strongly coupled resonators. Interestingly, the effective coupling rate (∼1.5 MHz) is tunable with the comb-drive actuator (+10%) as well as with a side-gate (−10%) placed close to the silicon beam. In contrast, the effective spring constant of the system is insensitive to either of them and changes only by ±0.5%. Finally, we show that the comb-drive actuator can be used to switch between different coupling rates with a frequency of at least 10 kHz.
536 _ _ |0 G:(DE-HGF)POF3-521
|a 521 - Controlling Electron Charge-Based Phenomena (POF3-521)
|c POF3-521
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Xu, D.
|b 1
700 1 _ |0 P:(DE-Juel1)165946
|a Goldsche, M.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Khodkov, T.
|b 3
700 1 _ |0 P:(DE-HGF)0
|a Barzanjeh, S.
|b 4
700 1 _ |0 P:(DE-Juel1)161247
|a von den Driesch, N.
|b 5
700 1 _ |0 P:(DE-Juel1)125569
|a Buca, D.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Stampfer, C.
|b 7
773 _ _ |0 PERI:(DE-600)1469436-0
|a 10.1063/1.4964122
|g Vol. 109, no. 14, p. 143507 -
|n 14
|p 143507
|t Applied physics letters
|v 109
|x 0003-6951
|y 2016
856 4 _ |u https://juser.fz-juelich.de/record/825967/files/1.4964122-1.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825967/files/1.4964122-1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825967/files/1.4964122-1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825967/files/1.4964122-1.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/825967/files/1.4964122-1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:825967
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |0 I:(DE-588b)36225-6
|6 0000-0002-1712-1234
|a RWTH Aachen
|b 0
|k RWTH
910 1 _ |0 I:(DE-588b)36225-6
|6 P:(DE-Juel1)145185
|a RWTH Aachen
|b 1
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165946
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-HGF)0
|a Forschungszentrum Jülich
|b 3
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)161247
|a Forschungszentrum Jülich
|b 5
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)125569
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)36225-6
|6 0000-0002-4958-7362
|a RWTH Aachen
|b 7
|k RWTH
910 1 _ |0 I:(DE-588b)5008462-8
|6 0000-0002-4958-7362
|a Forschungszentrum Jülich
|b 7
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-521
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Controlling Electron Charge-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2016
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b APPL PHYS LETT : 2015
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-8-20110106
|k PGI-8
|l Bioelektronik
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-8-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21