000825974 001__ 825974
000825974 005__ 20210129225504.0
000825974 0247_ $$2doi$$a10.3390/pr4040038
000825974 0247_ $$2Handle$$a2128/13421
000825974 0247_ $$2WOS$$aWOS:000391592700005
000825974 037__ $$aFZJ-2017-00246
000825974 082__ $$a570
000825974 1001_ $$0P:(DE-HGF)0$$aParker, Robert$$b0$$eCorresponding author
000825974 245__ $$aModeling and Hemofiltration Treatment of Acute Inflammation
000825974 260__ $$aBasel$$bMDPI$$c2016
000825974 3367_ $$2DRIVER$$aarticle
000825974 3367_ $$2DataCite$$aOutput Types/Journal article
000825974 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484139015_30594
000825974 3367_ $$2BibTeX$$aARTICLE
000825974 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000825974 3367_ $$00$$2EndNote$$aJournal Article
000825974 520__ $$aThe body responds to endotoxins by triggering the acute inflammatory response system to eliminate the threat posed by gram-negative bacteria (endotoxin) and restore health. However, an uncontrolled inflammatory response can lead to tissue damage, organ failure, and ultimately death; this is clinically known as sepsis. Mathematical models of acute inflammatory disease have the potential to guide treatment decisions in critically ill patients. In this work, an 8-state (8-D) differential equation model of the acute inflammatory response system to endotoxin challenge was developed. Endotoxin challenges at 3 and 12 mg/kg were administered to rats, and dynamic cytokine data for interleukin (IL)-6, tumor necrosis factor (TNF), and IL-10 were obtained and used to calibrate the model. Evaluation of competing model structures was performed by analyzing model predictions at 3, 6, and 12 mg/kg endotoxin challenges with respect to experimental data from rats. Subsequently, a model predictive control (MPC) algorithm was synthesized to control a hemoadsorption (HA) device, a blood purification treatment for acute inflammation. A particle filter (PF) algorithm was implemented to estimate the full state vector of the endotoxemic rat based on time series cytokine measurements. Treatment simulations show that: (i) the apparent primary mechanism of HA efficacy is white blood cell (WBC) capture, with cytokine capture a secondary benefit; and (ii) differential filtering of cytokines and WBC does not provide substantial improvement in treatment outcomes vs. existing HA devices.
000825974 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000825974 588__ $$aDataset connected to CrossRef
000825974 7001_ $$0P:(DE-HGF)0$$aHogg, Justin$$b1
000825974 7001_ $$0P:(DE-HGF)0$$aRoy, Anirban$$b2
000825974 7001_ $$0P:(DE-HGF)0$$aKellum, John$$b3
000825974 7001_ $$0P:(DE-HGF)0$$aRimmelé, Thomas$$b4
000825974 7001_ $$0P:(DE-HGF)0$$aDaun-Gruhn, Silvia$$b5
000825974 7001_ $$0P:(DE-HGF)0$$aFedorchak, Morgan$$b6
000825974 7001_ $$0P:(DE-HGF)0$$aValenti, Isabella$$b7
000825974 7001_ $$0P:(DE-HGF)0$$aFederspiel, William$$b8
000825974 7001_ $$0P:(DE-HGF)0$$aRubin, Jonathan$$b9
000825974 7001_ $$0P:(DE-HGF)0$$aVodovotz, Yoram$$b10
000825974 7001_ $$0P:(DE-HGF)0$$aLagoa, Claudio$$b11
000825974 7001_ $$0P:(DE-HGF)0$$aClermont, Gilles$$b12
000825974 773__ $$0PERI:(DE-600)2720994-5$$a10.3390/pr4040038$$gVol. 4, no. 4, p. 38 -$$n4$$p38 -$$tProcesses$$v4$$x2227-9717$$y2016
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.pdf$$yOpenAccess
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.gif?subformat=icon$$xicon$$yOpenAccess
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825974 8564_ $$uhttps://juser.fz-juelich.de/record/825974/files/processes-04-00038.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825974 909CO $$ooai:juser.fz-juelich.de:825974$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825974 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-3$$b5
000825974 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b5$$kFZJ
000825974 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000825974 9141_ $$y2016
000825974 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000825974 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000825974 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000825974 915__ $$0StatID:(DE-HGF)0112$$2StatID$$aWoS$$bEmerging Sources Citation Index
000825974 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000825974 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825974 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000825974 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000825974 920__ $$lyes
000825974 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x0
000825974 980__ $$ajournal
000825974 980__ $$aVDB
000825974 980__ $$aUNRESTRICTED
000825974 980__ $$aI:(DE-Juel1)INM-3-20090406
000825974 9801_ $$aFullTexts