000825991 001__ 825991
000825991 005__ 20210129225507.0
000825991 037__ $$aFZJ-2017-00263
000825991 041__ $$aEnglish
000825991 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$eCorresponding author$$ufzj
000825991 1112_ $$aQENS 2016 in Potsdam PROBINGS DYNAMIC PHENOMENA FROM PICOSECONDS TO NANOSECONDS$$cPotsdam$$d2016-09-05 - 2016-09-08$$gQENS2016$$wGermany
000825991 245__ $$aAmphiphilic Polymers with a Continuous Philicity Profile in Bicontinuous Microemulsions Studied by Quasielastic Neutron Scattering
000825991 260__ $$c2016
000825991 3367_ $$033$$2EndNote$$aConference Paper
000825991 3367_ $$2DataCite$$aOther
000825991 3367_ $$2BibTeX$$aINPROCEEDINGS
000825991 3367_ $$2DRIVER$$aconferenceObject
000825991 3367_ $$2ORCID$$aLECTURE_SPEECH
000825991 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1484398805_17622$$xOther
000825991 502__ $$cHZB
000825991 520__ $$aWherever surfactants are applied, it is of general interest to use as little surfactant as possible. However, in e.g. microemulsion systems increasing the solubilization capacity of an amphiphilic mixture is always accompanied by the formation of liquid crystalline mesophases. Integrating amphiphilic block copolymers (so called efficiency boosters) into the amphiphilic film leads to a considerable increase of the efficiency. This effect is mainly due to an increase of the bending rigidity of the amphiphilic film due to the presence of polymer domains on either side of the film. The formation of liquid crystalline mesophases was found to be suppressed at low concentrations of block copolymers, while it was enhanced at high concentrations. To break this trade-off between surfactant efficiency and the stabilization of liquid crystalline phases we studied a new class of amphiphilic polymers - so called tapered polymers - following the amphiphilicity profile going from diblock via triblock to continuously tapered [1]. In contrast to the commonly used diblock or triblock copolymers the molecular structure of tapered polymers gradually changes from hydrophilic to hydrophobic. The influence of this new class of polymers on the properties of microemulsion systems was investigated by systematic phase behaviour studies, SANS (small angle neutron scattering) and NSE (neutron spin echo) experiments. These measurements reveal that the polymers cause a stiffening of the amphiphilic film while simultaneously the saddle splay modulus increases considerably less such that the formation of liquid crystalline mesophases is suppressed while bicontinuous structures are geometrically favored. In addition, these findings are supported by theoretical calculations following the works of Lipowsky [2]. Hence tapered amphiphilic polymers not only increase the efficiency of surfactants, but simultaneously suppress the formation of liquid crystalline phases, and, thereby, greatly increasing their application potential.The underlying NSE experiments for this interpretation rely on smallest changes of the relaxation curves (of ca. 1% steps) for still small changes of the bending rigidity (of ca. 10% steps). This high reliability of the experiments conducted at the SNS-NSE displays the accuracy of the instrument itself and the latest developments of the evaluation software, which were necessary to interpret such tiny changes of the bending rigidity reliably.[1] H.F.M. Klemmer, J. Allgaier, H. Frielinghaus, O. Holderer, Soft Matter (submitted) 2016.[2] C. Hiergeist, R. Lipowsky, Journal de Physique II,
000825991 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0
000825991 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1
000825991 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2
000825991 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0
000825991 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and  Proteins$$x0
000825991 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0
000825991 693__ $$0EXP:(DE-MLZ)J-NSE-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)J-NSE-20140101$$6EXP:(DE-MLZ)NL2ao-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eJ-NSE: Neutron spin-echo spectrometer$$fNL2ao$$x1
000825991 693__ $$0EXP:(DE-Juel1)SNS-NSE-20150203$$5EXP:(DE-Juel1)SNS-NSE-20150203$$eSNS-NSE: Neutron Spin Echo Spectrometer$$x2
000825991 7001_ $$0P:(DE-Juel1)130718$$aHolderer, Olaf$$b1$$ufzj
000825991 7001_ $$0P:(DE-Juel1)130501$$aAllgaier, J.$$b2$$ufzj
000825991 7001_ $$0P:(DE-HGF)0$$aHelge Klemmer, Uni Köln$$b3
000825991 8564_ $$uhttps://www.helmholtz-berlin.de/events/qens-2016/
000825991 909CO $$ooai:juser.fz-juelich.de:825991$$pVDB$$pVDB:MLZ
000825991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ
000825991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130718$$aForschungszentrum Jülich$$b1$$kFZJ
000825991 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130501$$aForschungszentrum Jülich$$b2$$kFZJ
000825991 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0
000825991 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1
000825991 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2
000825991 9141_ $$y2016
000825991 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000825991 920__ $$lyes
000825991 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0
000825991 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1
000825991 980__ $$aconf
000825991 980__ $$aVDB
000825991 980__ $$aUNRESTRICTED
000825991 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218
000825991 980__ $$aI:(DE-Juel1)JCNS-1-20110106