000825994 001__ 825994 000825994 005__ 20210129225508.0 000825994 037__ $$aFZJ-2017-00266 000825994 041__ $$aEnglish 000825994 1001_ $$0P:(DE-Juel1)130646$$aFrielinghaus, Henrich$$b0$$eCorresponding author$$ufzj 000825994 1112_ $$aWorkshop on SoNDe application in neutron detection$$cFreising$$d2016-10-17 - 2016-10-19$$gSoNDe2016$$wGermany 000825994 245__ $$aWhat is the scope of fast SANS detectors at ESS ? 000825994 260__ $$c2016 000825994 3367_ $$033$$2EndNote$$aConference Paper 000825994 3367_ $$2DataCite$$aOther 000825994 3367_ $$2BibTeX$$aINPROCEEDINGS 000825994 3367_ $$2DRIVER$$aconferenceObject 000825994 3367_ $$2ORCID$$aLECTURE_SPEECH 000825994 3367_ $$0PUB:(DE-HGF)6$$2PUB:(DE-HGF)$$aConference Presentation$$bconf$$mconf$$s1484400197_17626$$xInvited 000825994 502__ $$cJCNS 000825994 520__ $$aThe requirements of SANS instruments at the new high-flux source ESS are discussed in context with detectors. Since instrument fluxes are one order of magnitude (or more) higher than at conventional reactors, new detector concepts are essential. There, the new SoNDe concept ideally fills in the gap.We will see that for most of the SANS measurements SoNDe will ideally deal with the high intensities of SKADI. The envisaged 20MHz count rate on 1m2 detector will serve most of the experiments well. For instance single-shot kinetic experiment need to deal with high intensities, since the statistics must be collected in a single run.Apart from the classical SANS requirements, we will discuss options for high resolution. Liquid crystalline order demands for high resolution in the classical SANS range, where neighbored Bragg peaks need to be distingushed, where the peak width will characterize the correlation length, and where the peak width as a function of peak order will tell about the kind of order (whether a paracrystal is obtained). At smaller angles in the VSANS range, best resolution is required to obtain smallest possible scattering angles with adequate resolution. Both techniques would benefit from an interpolation algorithm that could drive the resolution higher by factors of 3 to 5 or even 10. Here, the Anger camera principle would fill in the gap.While the classical SANS experiments require highest count rates with well separated dead times for each pixel that is usually obtained by optically separating the light conduction for each pixel, the high resolution Anger camera would need to spread light cones over several pixels. While in the first case grooves in the scintillation material would separate the light conduction, they are not allowed in the second case. This dilemma needs to be discussed and solved, where the emphasis lies on the classical SANS applications, and eventually high resolution options need to be seen as wishes for the future. 000825994 536__ $$0G:(DE-HGF)POF3-6215$$a6215 - Soft Matter, Health and Life Sciences (POF3-621)$$cPOF3-621$$fPOF III$$x0 000825994 536__ $$0G:(DE-HGF)POF3-6G15$$a6G15 - FRM II / MLZ (POF3-6G15)$$cPOF3-6G15$$fPOF III$$x1 000825994 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x2 000825994 65027 $$0V:(DE-MLZ)SciArea-210$$2V:(DE-HGF)$$aSoft Condensed Matter$$x0 000825994 65027 $$0V:(DE-MLZ)SciArea-180$$2V:(DE-HGF)$$aMaterials Science$$x1 000825994 65017 $$0V:(DE-MLZ)GC-1602-2016$$2V:(DE-HGF)$$aPolymers, Soft Nano Particles and Proteins$$x0 000825994 65017 $$0V:(DE-MLZ)GC-1601-2016$$2V:(DE-HGF)$$aEngineering, Industrial Materials and Processing$$x1 000825994 693__ $$0EXP:(DE-MLZ)KWS1-20140101$$1EXP:(DE-MLZ)FRMII-20140101$$5EXP:(DE-MLZ)KWS1-20140101$$6EXP:(DE-MLZ)NL3b-20140101$$aForschungs-Neutronenquelle Heinz Maier-Leibnitz $$eKWS-1: Small angle scattering diffractometer$$fNL3b$$x0 000825994 8564_ $$uhttp://www.fz-juelich.de/jcns/EN/Leistungen/ConferencesAndWorkshops/ESS/SondeWorkshop/_node.html 000825994 909CO $$ooai:juser.fz-juelich.de:825994$$pVDB$$pVDB:MLZ 000825994 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130646$$aForschungszentrum Jülich$$b0$$kFZJ 000825994 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6215$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x0 000825994 9131_ $$0G:(DE-HGF)POF3-6G15$$1G:(DE-HGF)POF3-6G0$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G15$$aDE-HGF$$bForschungsbereich Materie$$lGroßgeräte: Materie$$vFRM II / MLZ$$x1 000825994 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x2 000825994 9141_ $$y2016 000825994 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext 000825994 920__ $$lyes 000825994 9201_ $$0I:(DE-Juel1)JCNS-FRM-II-20110218$$kJCNS (München) ; Jülich Centre for Neutron Science JCNS (München) ; JCNS-FRM-II$$lJCNS-FRM-II$$x0 000825994 9201_ $$0I:(DE-Juel1)JCNS-1-20110106$$kNeutronenstreuung ; JCNS-1$$lNeutronenstreuung $$x1 000825994 980__ $$aconf 000825994 980__ $$aVDB 000825994 980__ $$aUNRESTRICTED 000825994 980__ $$aI:(DE-Juel1)JCNS-FRM-II-20110218 000825994 980__ $$aI:(DE-Juel1)JCNS-1-20110106