000825997 001__ 825997
000825997 005__ 20240711092238.0
000825997 0247_ $$2Handle$$a2128/14065
000825997 0247_ $$2ISSN$$a1866-1793
000825997 020__ $$a978-3-95806-175-0
000825997 037__ $$aFZJ-2017-00269
000825997 041__ $$aEnglish
000825997 1001_ $$0P:(DE-Juel1)144064$$aTalik, Michal$$b0$$eCorresponding author$$gmale$$ufzj
000825997 245__ $$aInfluence of Initial Thermomechanical Treatment on High Temperature Properties of Laves Phase Strengthened Ferritic Steels$$f- 2017-03-28
000825997 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2016
000825997 300__ $$axxiii, 130 S.
000825997 3367_ $$2DataCite$$aOutput Types/Dissertation
000825997 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000825997 3367_ $$2ORCID$$aDISSERTATION
000825997 3367_ $$2BibTeX$$aPHDTHESIS
000825997 3367_ $$02$$2EndNote$$aThesis
000825997 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1490853763_20066
000825997 3367_ $$2DRIVER$$adoctoralThesis
000825997 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v338
000825997 502__ $$aRWTH Aachen, Diss., 2016$$bDr.$$cRWTH Aachen$$d2016
000825997 520__ $$aThe aim of this work was to design 17 wt%Cr Laves phase strengthened HiperFer ($\textbf{Hi}$gh $\textbf{per}$fomrance $\textbf{Fer}$rite) steels and evaluate their properties. This class of steel is supposed to be used in Advanced Ultra Super Critical power plants. Such cycles exhibit higher efficiency and are environmentally friendly, but improved materials with high resistance to fireside/steam oxidation and suficient creep strength are required. The work focused on the characterization of creep properties of 17Cr2.5W0.5Nb0.25Si heat resistant steel. Small batches of steels with nominal compositions of 17Cr3W0.5Nb0.25Si and 17Cr3W0.9Nb0.25Si were used to analyze the inuence of chemical composition on the precipitation behaviour in comparison to 17Cr2.5W0.5Nb0.25Si steel. Creep strength of HiperFer steels is ensured by fine dispersion of thermodynamically stable Laves phase particles, while maintaining high corrosion resistance by a relatively high chromium content. Design of HiperFer steels was accomplished by thermodynamic modeling (Thermocalc) with the main tasks of elimination of the unwelcome brittle (Fe,Cr)-$\sigma$ phase and maximization of the content of the strengthening C14 Fe$_{2}$Nb type Laves phase particles. Long term annealing experiments of all HiperFer steels were performed at 650 °C in order to evaluate the role of chemical composition and initial thermo-mechanical treatment state on precipitation behaviour. Laves phase particles formed quickly after few hours and the size of precipitates did not change signicantly within 1,000 hours. The observed development of Laves phase particles was compared with thermodynamical calculations (TC-Prisma). The creep properties of 17Cr2.5W0.5Nb0.25Si steel in different initial thermo-mechanical treatment states were tested at 650 °C. The influence of different cold rolling procedures, and heat treatments was investigated. Increased cold rolling deformation had a positive effect resulting not only from work hardening, but from the acceleration of Laves phase particle precipitation. The recrystallization annealed material exhibited signficantly shorter creep life in comparis onto the rolled material. Two promising heat treatments restoring the creep strength up to the level of rolled material were identified. Tempering at 540 °C accelerates the formation and reduces the size of strengthening Laves phase precipitates. Short term tempering at 800 °C causes dense precipitation of Laves phase particles at grain boundaries without detrimental influence on the morphology of Laves phase particles in the grain interiors. Dense precipitation of coarse Laves phase particles causes a retardation of grain boundary sliding in the later periods of creep exposure.
000825997 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000825997 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000825997 650_7 $$xDiss.
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.pdf$$yOpenAccess
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.gif?subformat=icon$$xicon$$yOpenAccess
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000825997 8564_ $$uhttps://juser.fz-juelich.de/record/825997/files/Energie_Umwelt_338.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000825997 909CO $$ooai:juser.fz-juelich.de:825997$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000825997 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000825997 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000825997 9141_ $$y2017
000825997 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144064$$aForschungszentrum Jülich$$b0$$kFZJ
000825997 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000825997 920__ $$lyes
000825997 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000825997 9801_ $$aFullTexts
000825997 980__ $$aphd
000825997 980__ $$aVDB
000825997 980__ $$aUNRESTRICTED
000825997 980__ $$abook
000825997 980__ $$aI:(DE-Juel1)IEK-2-20101013
000825997 981__ $$aI:(DE-Juel1)IMD-1-20101013