000826010 001__ 826010
000826010 005__ 20220930130114.0
000826010 0247_ $$2doi$$a10.1021/acs.oprd.6b00232
000826010 0247_ $$2ISSN$$a1083-6160
000826010 0247_ $$2ISSN$$a1520-586X
000826010 0247_ $$2WOS$$aWOS:000386188400007
000826010 037__ $$aFZJ-2017-00282
000826010 082__ $$a540
000826010 1001_ $$0P:(DE-Juel1)136922$$aWachtmeister, Jochen$$b0
000826010 245__ $$aStereoselective Two-Step Biocatalysis in Organic Solvent: Toward All Stereoisomers of a 1,2-Diol at High Product Concentrations
000826010 260__ $$aWashington, DC$$bACS Publ.$$c2016
000826010 3367_ $$2DRIVER$$aarticle
000826010 3367_ $$2DataCite$$aOutput Types/Journal article
000826010 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484119821_30594
000826010 3367_ $$2BibTeX$$aARTICLE
000826010 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826010 3367_ $$00$$2EndNote$$aJournal Article
000826010 520__ $$aBiotransformations on larger scale are mostly limited to cases in which alternative chemical routes lack sufficient chemo-, regio-, or stereoselectivity. Here, we expand the applicability of biocatalysis by combining cheap whole cell catalysts with a microaqueous solvent system. Compared to aqueous systems, this permits manifoldly higher concentrations of hydrophobic substrates while maintaining stereoselectivity. We apply these methods to four different two-step reactions of carboligation and oxidoreduction to obtain 1-phenylpropane-1,2-diol (PPD), a versatile building block for pharmaceuticals, starting from inexpensive aldehyde substrates. By a modular combination of two carboligases and two alcohol dehydrogenases, all four stereoisomers of PPD can be produced in a flexible way. After thorough optimization of each two-step reaction, the resulting processes enabled up to 63 g L–1 product concentration (98% yield), space-time-yields up to 144 g L–1 d–1, and a target isomer content of at least 95%. Despite the use of whole cell catalysts, we did not observe any side product formation of note. In addition, we prove that, by using 1,5-pentandiol as a smart cosubstrate, a very advantageous cofactor regeneration system could be applied.
000826010 536__ $$0G:(DE-HGF)POF3-581$$a581 - Biotechnology (POF3-581)$$cPOF3-581$$fPOF III$$x0
000826010 588__ $$aDataset connected to CrossRef
000826010 7001_ $$0P:(DE-Juel1)136769$$aJakoblinnert, Andre$$b1
000826010 7001_ $$0P:(DE-Juel1)144643$$aRother, Dörte$$b2$$eCorresponding author
000826010 773__ $$0PERI:(DE-600)2006299-0$$a10.1021/acs.oprd.6b00232$$gVol. 20, no. 10, p. 1744 - 1753$$n10$$p1744 - 1753$$tOrganic process research & development$$v20$$x1520-586X$$y2016
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.pdf$$yRestricted
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.gif?subformat=icon$$xicon$$yRestricted
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826010 8564_ $$uhttps://juser.fz-juelich.de/record/826010/files/acs.oprd.6b00232.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826010 8767_ $$81083-6160$$92016-09-20$$d2016-09-20$$eHybrid-OA$$jZahlung erfolgt$$lKK: Mittermaier$$zUSD 2000,-
000826010 909CO $$ooai:juser.fz-juelich.de:826010$$pOpenAPC$$pVDB$$popenCost
000826010 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826010 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bORG PROCESS RES DEV : 2015
000826010 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826010 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826010 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826010 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826010 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000826010 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826010 915__ $$0StatID:(DE-HGF)0550$$2StatID$$aNo Authors Fulltext
000826010 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826010 9141_ $$y2016
000826010 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144643$$aForschungszentrum Jülich$$b2$$kFZJ
000826010 9131_ $$0G:(DE-HGF)POF3-581$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vBiotechnology$$x0
000826010 9201_ $$0I:(DE-Juel1)IBG-1-20101118$$kIBG-1$$lBiotechnologie$$x0
000826010 980__ $$ajournal
000826010 980__ $$aVDB
000826010 980__ $$aUNRESTRICTED
000826010 980__ $$aI:(DE-Juel1)IBG-1-20101118
000826010 980__ $$aAPC