000826018 001__ 826018
000826018 005__ 20240610120403.0
000826018 0247_ $$2doi$$a10.1016/j.jallcom.2016.11.417
000826018 0247_ $$2ISSN$$a0925-8388
000826018 0247_ $$2ISSN$$a1873-4669
000826018 0247_ $$2WOS$$aWOS:000391818100074
000826018 0247_ $$2altmetric$$aaltmetric:21832139
000826018 037__ $$aFZJ-2017-00287
000826018 082__ $$a670
000826018 1001_ $$0P:(DE-HGF)0$$aVrtnik, S.$$b0
000826018 245__ $$aSuperconductivity in thermally annealed Ta-Nb-Hf-Zr-Ti high-entropy alloys
000826018 260__ $$aLausanne$$bElsevier$$c2017
000826018 3367_ $$2DRIVER$$aarticle
000826018 3367_ $$2DataCite$$aOutput Types/Journal article
000826018 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484120862_30600
000826018 3367_ $$2BibTeX$$aARTICLE
000826018 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000826018 3367_ $$00$$2EndNote$$aJournal Article
000826018 520__ $$aWe present a study of superconductivity in Ta-Nb-Hf-Zr-Ti high-entropy alloys (HEAs) by investigating four samples of different atomic concentrations (equimolar and off-equimolar) and number of components (4 and 5), subjected to different thermal treatments. The structure of the samples varied between a homogeneous random solid solution and a partially ordered nanostructure in the form of a three-dimensional grid of short-range ordered atomic clusters enriched in Zr and Hf that has developed during long-time annealing. Superconductivity was found to be a robust phenomenon, being quite insensitive to the actual structure of the material. All investigated samples were superconducting in the entirety of their volumes. The superconducting transition temperatures TC of the samples are scattered in the range between 5.0 and 7.3 K and this scatter could be related to the degree of structural and chemical inhomogeneity of the samples. In the samples with partially ordered nanostructure, short-range atomic clusters possess a slightly different TC than the Ta- and Nb-rich matrix. Our results also demonstrate the important fact that the formation, stability and structure of a regular (non-ideal) HEA mixture are determined by both, the minimization of the mixing enthalpy that favors local atomic ordering and the maximization of the mixing entropy that favors a random solid solution. The actual equilibrium state achieved during long-time thermal annealing via the atomic diffusion is generally partially ordered, and the resulting nanostructure is a sensitive function of the number of components constituting the HEA, their concentrations, the differences in the atomic radii and the annealing temperature and time. This nanostructure essentially determines the electronic properties of HEA materials.
000826018 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000826018 588__ $$aDataset connected to CrossRef
000826018 7001_ $$0P:(DE-HGF)0$$aKoželj, P.$$b1
000826018 7001_ $$0P:(DE-HGF)0$$aMeden, A.$$b2
000826018 7001_ $$0P:(DE-HGF)0$$aMaiti, S.$$b3
000826018 7001_ $$0P:(DE-HGF)0$$aSteurer, W.$$b4
000826018 7001_ $$0P:(DE-Juel1)130637$$aFeuerbacher, M.$$b5$$ufzj
000826018 7001_ $$0P:(DE-HGF)0$$aDolinšek, J.$$b6$$eCorresponding author
000826018 773__ $$0PERI:(DE-600)2012675-X$$a10.1016/j.jallcom.2016.11.417$$gVol. 695, p. 3530 - 3540$$p3530 - 3540$$tJournal of alloys and compounds$$v695$$x0925-8388$$y2017
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.pdf$$yRestricted
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.gif?subformat=icon$$xicon$$yRestricted
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000826018 8564_ $$uhttps://juser.fz-juelich.de/record/826018/files/1-s2.0-S0925838816339007-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000826018 909CO $$ooai:juser.fz-juelich.de:826018$$pVDB
000826018 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130637$$aForschungszentrum Jülich$$b5$$kFZJ
000826018 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000826018 9141_ $$y2017
000826018 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ALLOY COMPD : 2015
000826018 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000826018 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000826018 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000826018 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000826018 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000826018 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000826018 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000826018 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000826018 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000826018 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000826018 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x0
000826018 980__ $$ajournal
000826018 980__ $$aVDB
000826018 980__ $$aI:(DE-Juel1)PGI-5-20110106
000826018 980__ $$aUNRESTRICTED
000826018 981__ $$aI:(DE-Juel1)ER-C-1-20170209