000826039 001__ 826039 000826039 005__ 20210129225514.0 000826039 0247_ $$2doi$$a10.1038/srep40145 000826039 0247_ $$2Handle$$a2128/13476 000826039 0247_ $$2WOS$$aWOS:000392231300001 000826039 0247_ $$2altmetric$$aaltmetric:21832140 000826039 0247_ $$2pmid$$apmid:28071755 000826039 037__ $$aFZJ-2017-00308 000826039 041__ $$aEnglish 000826039 082__ $$a000 000826039 1001_ $$0P:(DE-Juel1)168454$$aJunker, Laura$$b0$$ufzj 000826039 245__ $$aVariation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances 000826039 260__ $$aLondon$$bNature Publishing Group$$c2017 000826039 3367_ $$2DRIVER$$aarticle 000826039 3367_ $$2DataCite$$aOutput Types/Journal article 000826039 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1484728194_22329 000826039 3367_ $$2BibTeX$$aARTICLE 000826039 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000826039 3367_ $$00$$2EndNote$$aJournal Article 000826039 520__ $$aFor long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change. 000826039 536__ $$0G:(DE-HGF)POF3-582$$a582 - Plant Science (POF3-582)$$cPOF3-582$$fPOF III$$x0 000826039 588__ $$aDataset connected to CrossRef 000826039 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0 000826039 7001_ $$0P:(DE-HGF)0$$aKleiber, Anita$$b1 000826039 7001_ $$0P:(DE-HGF)0$$aJansen, Kirstin$$b2 000826039 7001_ $$0P:(DE-HGF)0$$aWildhagen, Henning$$b3 000826039 7001_ $$0P:(DE-HGF)0$$aHess, Moritz$$b4 000826039 7001_ $$0P:(DE-HGF)0$$aKayler, Zachary$$b5 000826039 7001_ $$0P:(DE-HGF)0$$aKammerer, Bernd$$b6 000826039 7001_ $$0P:(DE-HGF)0$$aSchnitzler, Jörg-Peter$$b7 000826039 7001_ $$0P:(DE-HGF)0$$aKreuzwieser, Jürgen$$b8 000826039 7001_ $$0P:(DE-HGF)0$$aGessler, Arthur$$b9 000826039 7001_ $$0P:(DE-HGF)0$$aEnsminger, Ingo$$b10$$eCorresponding author 000826039 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep40145$$gVol. 7, p. 40145 -$$p40145$$tScientific reports$$v7$$x2045-2322$$y2017 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.pdf$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.gif?subformat=icon$$xicon$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-1440$$xicon-1440$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-180$$xicon-180$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-640$$xicon-640$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.pdf?subformat=pdfa$$xpdfa$$yRestricted 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.pdf$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.pdf$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.gif?subformat=icon$$xicon$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.gif?subformat=icon$$xicon$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-180$$xicon-180$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-640$$xicon-640$$yOpenAccess 000826039 8564_ $$uhttps://juser.fz-juelich.de/record/826039/files/srep40145.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000826039 909CO $$ooai:juser.fz-juelich.de:826039$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire 000826039 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168454$$aForschungszentrum Jülich$$b0$$kFZJ 000826039 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a IBG-2$$b0 000826039 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$aExternal Institute$$b10$$kExtern 000826039 9131_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0 000826039 9141_ $$y2017 000826039 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000826039 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews 000826039 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0 000826039 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record 000826039 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015 000826039 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015 000826039 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal 000826039 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ 000826039 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000826039 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000826039 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000826039 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000826039 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000826039 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database 000826039 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline 000826039 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000826039 920__ $$lyes 000826039 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$kIBG-2$$lPflanzenwissenschaften$$x0 000826039 980__ $$ajournal 000826039 980__ $$aVDB 000826039 980__ $$aUNRESTRICTED 000826039 980__ $$aI:(DE-Juel1)IBG-2-20101118 000826039 9801_ $$aFullTexts