001     826039
005     20210129225514.0
024 7 _ |a 10.1038/srep40145
|2 doi
024 7 _ |a 2128/13476
|2 Handle
024 7 _ |a WOS:000392231300001
|2 WOS
024 7 _ |a altmetric:21832140
|2 altmetric
024 7 _ |a pmid:28071755
|2 pmid
037 _ _ |a FZJ-2017-00308
041 _ _ |a English
082 _ _ |a 000
100 1 _ |a Junker, Laura
|0 P:(DE-Juel1)168454
|b 0
|u fzj
245 _ _ |a Variation in short-term and long-term responses of photosynthesis and isoprenoid-mediated photoprotection to soil water availability in four Douglas-fir provenances
260 _ _ |a London
|c 2017
|b Nature Publishing Group
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1484728194_22329
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a For long-lived forest tree species, the understanding of intraspecific variation among populations and their response to water availability can reveal their ability to cope with and adapt to climate change. Dissipation of excess excitation energy, mediated by photoprotective isoprenoids, is an important defense mechanism against drought and high light when photosynthesis is hampered. We used 50-year-old Douglas-fir trees of four provenances at two common garden experiments to characterize provenance-specific variation in photosynthesis and photoprotective mechanisms mediated by essential and non-essential isoprenoids in response to soil water availability and solar radiation. All provenances revealed uniform photoprotective responses to high solar radiation, including increased de-epoxidation of photoprotective xanthophyll cycle pigments and enhanced emission of volatile monoterpenes. In contrast, we observed differences between provenances in response to drought, where provenances sustaining higher CO2 assimilation rates also revealed increased water-use efficiency, carotenoid-chlorophyll ratios, pools of xanthophyll cycle pigments, β-carotene and stored monoterpenes. Our results demonstrate that local adaptation to contrasting habitats affected chlorophyll-carotenoid ratios, pool sizes of photoprotective xanthophylls, β-carotene, and stored volatile isoprenoids. We conclude that intraspecific variation in isoprenoid-mediated photoprotective mechanisms contributes to the adaptive potential of Douglas-fir provenances to climate change.
536 _ _ |a 582 - Plant Science (POF3-582)
|0 G:(DE-HGF)POF3-582
|c POF3-582
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Kleiber, Anita
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Jansen, Kirstin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Wildhagen, Henning
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Hess, Moritz
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kayler, Zachary
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kammerer, Bernd
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Schnitzler, Jörg-Peter
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Kreuzwieser, Jürgen
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Gessler, Arthur
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ensminger, Ingo
|0 P:(DE-HGF)0
|b 10
|e Corresponding author
773 _ _ |a 10.1038/srep40145
|g Vol. 7, p. 40145 -
|0 PERI:(DE-600)2615211-3
|p 40145
|t Scientific reports
|v 7
|y 2017
|x 2045-2322
856 4 _ |u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.pdf
|y Restricted
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017%20Supplementary%20information.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.pdf
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/826039/files/srep40145.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826039/files/Junker%20et%20al%202017.pdf?subformat=pdfa
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/826039/files/srep40145.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/826039/files/srep40145.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/826039/files/srep40145.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:826039
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)168454
910 1 _ |a IBG-2
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-HGF)0
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 10
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a Creative Commons Attribution CC BY 4.0
|0 LIC:(DE-HGF)CCBY4
|2 HGFVOC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b SCI REP-UK : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0501
|2 StatID
|b DOAJ Seal
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0500
|2 StatID
|b DOAJ
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IBG-2-20101118
|k IBG-2
|l Pflanzenwissenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21